

- Ease of use of Deep Neural Networks by IT staff with no profound knowledge on Deep Learning
- Run training and predicting algorithms in hybrid HPC + Big Data environments
- Increase early diagnosis and improving treatments
- Extend the knowledge about diseases and pathologies
- Save direct and indirect healthcare costs

CONTACTS

This project has received funding from the European Union's Horizon 2020 research innovation programme under grant agreement No.825111

Performance Computing boosting Biomedical Applications

High

DEEPHEALTH

ABOUT

Aim

Provide **High Performance Computing (HPC)** power at the service of biomedical applications; and apply **Deep Learning** (DL) and **Computer Vision** (CV) techniques on large and complex biomedical datasets to support new and more efficient ways of diagnosis,

monitoring and treatment of diseases

Goals

- Filling the gap between the availability of new technologies and making extensive use of them
- Reducing the time to design and develop end-user applications/software platforms
- Increasing the productivity of expertusers by allowing them to design, train and test many more predictive models in the same period of time
- Providing medical personnel with a friendly and individualized digital decisionsupport tool

Development & Results DeepHealth Toolkit

- Free and open-source software with two core libraries and a dedicated front-end
- Ready to be integrated into end-user software platforms or applications
- Ready to run algorithms on Hybrid HPC
 + Big Data architectures with heterogeneous hardware
 - **EDDLL:** the European Distributed Deep Learning Library
- ECVL: the European Computer Vision Library

7 Enhanced biomedical and AI software platforms

- Commercial platforms: everis Lumen, PHILIPS Open Innovation Platform, THALES PIAF
- Research-oriented platforms: CEA's ExpressIFTM, CRS4's Digital Pathology, WINGS MigraineNet

CONCEPT

Use Cases

14 pilot test-beds in 3 areas:

Neurological diseases

- Migraine and Seizures prediction
- Major Depression
- Dementia
- Study of structural changes in lumbar spine pathology
- Population model for Alzheimer's Disease
- Epileptic seizures detection
- Objective fatigue assessment for multiple sclerosis patients

Tumor detection and early cancer prediction

- Chest cancer detection
- Prostate tumor diagnosis
- Skin cancer melanoma detection

Digital pathology and automated image annotation

- Classification of whole-slide histological images of colorectal biopsy samples
- CT brain perfusion maps synthesis
- Deep Image annotation
- Image Analysis and prediction for Urology

