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1 Introduction 

The European Computer Vision Library (ECVL)1 facilitates the integration and exchange of data 
between existing state-of-the-art Computer Vision (CV) and image processing libraries. Moreover, it 
provides new high-level CV functionalities thanks to specialized/accelerated versions of some CV 
algorithms commonly employed in conjunction with Deep Learning (DL) algorithms. The algorithms 
of ECVL are adapted to hardware accelerators (GPUs and FPGAs) in a user transparent way: the 
Hardware Abstraction Layer (HAL) hides hardware specific implementations of image manipulation 
functions. The user only decides which device should be used for the computation, moving the 
concerned image objects and then calling different Application Programming Interface (API) 
handlers that are the same for all hardware infrastructures. 

The main objective of WP3 is to develop and deploy the ECVL library that is going to be used in the 
use cases of the project. The work done for this deliverable is part of the task T3.2 “ECVL 
adaptation to heterogeneous HPC hardware”, that aims at optimizing and adapting the most 
relevant and time-consuming algorithms and methods deployed in the ECVL library to HPC 
infrastructures with heterogeneous computing elements, namely high-end CPUs, GPUs, and 
FPGAs. This task tackles the analysis of the algorithms of the ECVL library and their adaptation to 
heterogeneous HPC infrastructures. 

The work efforts of this task started at different project months and, because of that, some 
developments have been active longer and have made further progress. It is important to highlight 
that this deliverable has not been substantially impacted by the world-wide crisis related to the 
COVID19 pandemic. However, many development and testing activities have suffered considerable 
disruptions due to the strict restriction to access the workplace and reach the required facilities to 
perform the tasks associated with this deliverable. 

In this deliverable D3.3 “ECVL Hardware algorithms and adaptation to HPC”, we study the 
performance characteristics of the main functionalities of the ECVL library on different HPC 
infrastructures. This is currently an ongoing work that will be finished in month 27 and fully 
described in the deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)”. The 
organization of this deliverable is as follows: 

 Section 2 describes the current support for testing and integration of the ECVL library. 

 Section 3 characterizes the performance of the algorithms of the ECVL library on general 
purpose processors. 

 Section 4 presents the FPGA-based implementation of the algorithms of the ECVL library 
and an early performance evaluation. 

 Section 4 discusses the advances on the development of the DeepHealth FPGA board. 

 Section 5 remarks the main conclusions of the work done for this deliverable. 

  

                                                
1 ECVL code publicly available at https://github.com/deephealthproject/ecvl  

https://github.com/deephealthproject/ecvl
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2 Support for continuous testing and integration 

One of the goals of the DeepHealth project is to develop an ECVL library that supports 
heterogeneous hardware while keeping the same user interface. Therefore, hardware specific 
implementations of image manipulation functions are hidden under a Hardware Abstraction Layer 
(HAL). As a result, the user only decides which device should be used for the computation, moving 
the concerned image objects with the Image.to(device) method, and then calls API handlers that 
are common for all the types of hardware devices. 

In order to make sure that the ECVL library is always in a correct state, we need to build it and run 
tests on different environments after every commit. Since we do not want to perform this task 
manually, we decided to use a continuous integration toolflow deployed on a specific server. There 
are many different integration systems available, all of them with advantages and disadvantages. 
Among them, we selected Jenkins2 for the following reasons: 

1. It is successfully adopted by many big projects such as PyTorch, Netflix, Mozilla, Ubuntu, 
Docker and many others. 

2. It is completely open source and can be used to automate almost every process. 
3. Jenkins is a self-contained, open source automation server which can be used to automate 

all sorts of tasks related to building, testing, and delivering or deploying software. In the 
specific case of ECVL, the automation pipeline must include the following steps: 

a. Download the last version of the source code; 
b. Build the code on multiple platforms and environments; 
c. Perform tests on the same environments; 
d. Generate the documentation and upload it to the website. 

 

Figure 1: Example of Jenkins automated pipeline. 

An example of pipeline is depicted in Figure 1. In the figure, it is possible to see four parallel 
branches that are launched by the Jenkins master process and executed by slave containers. The 
documentation stage is run at each commit, so that the automatic documentation is always updated 
and aligned with the master branch. The third branch is run only at release time, to update the 
"official" release documentation, which will be also available in the future. Then, two stages cover 
Linux and Windows versions of the library. These consist of a building stage (with specific 
compilers), a test phase using GTest suite, and only for the Windows pipeline a coverage stage to 
analyse and report the percentage of code really tested in the previous stage. Each of these 
pipelines are run both on CPU and GPU platforms, so that we can test the deployability of the ECVL 
library on every platform. In the future, FPGA platforms will also be included in this pipeline. 

                                                

2 https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258  

https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258


 D3.3: ECVL Hardware algorithms and adaptation to HPC 

 

GA-No 825111 Page 6 of 28 
 

The configuration file for the pipeline, called Jenkinsfile, is included in the GitHub repository3, so that 
it can be easily modified if the necessity occurs. Figure 2 shows a code snippet of the Jenkinsfile. 

 

Figure 2: ECVL Jenkinsfile code example. 

The automation server receives a notification from GitHub right after every push event and triggers 
an execution of the pipeline. Detailed logs of the building and testing processes are available, and a 
badge is exposed on the GitHub page of the projects, stating whether the last build was successful 
or not. In order to build the project on more than one platform, we actually employ as many slaves 
as needed alongside the master. The validation of pull requests is another function of Jenkins that 
we use, to make sure that the master branch is not broken by the merging of other branches. 

The diverse environments in which to build and test the ECVL library take the shape of Docker 
containers. A container is a unit of software that packages up code and all its dependencies, 
isolating them from the host environment. The reason for this choice is that it allows to choose, 
modify, and keep track of every build environment in a flexible way, and we can instantiate any of 
them in any machine where Docker can run. In fact, Jenkins downloads the appropriate Docker 
images on the chosen slaves before the beginning of the pipeline. The Jenkins master server itself 
runs inside a container, so that we can change the machine on which it runs with minimal effort.  

Figures 3 and 4 list the currently tested environments in the ECVL library. As shown in these 
figures, the CPU implementation of ECVL has been successfully tested with diverse operating 
systems and compilers. In the next months, the GPU and the FPGA implementations will be 
integrated and tested. 

Currently, most of the effort in this part of the work is being put on the support for GPUs, which is 
obtained by means of the NVIDIA Container Runtime. Jenkins can integrate with any tool that 
provides a command-line interface, so the integration with FPGA boards is certainly feasible and will 
be done in the future. 

Of course, the lack of appropriate unit tests in the source code nullifies the effectiveness of a testing 
framework. For this reason, the Jenkins server is integrated with a tool for reporting code coverage, 
a measurement used to express which lines of code were executed by a test suite. For this task we 
chose Codecov4. Code coverage reports are generated and shown for each commit. Figure 5 
shows an example of such a coverage report.  

 

                                                
3 Jenkinsfile available at https://github.com/deephealthproject/ecvl/blob/master/Jenkinsfile  
4 https://codecov.io/ 

https://github.com/deephealthproject/ecvl/blob/master/Jenkinsfile
https://codecov.io/
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.  
Figure 3: CPU-based environments currently tested in ECVL. 

 

 
Figure 4: GPU-based environments currently tested in ECVL. 
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Figure 5: ECVL code coverage reports. 

 

3 Performance profiling and characterization with CPUS  

This section presents a performance characterization of the ECVL library on HPC infrastructures 
with general purpose processors. The goal of this characterization is to identify the most time-
consuming ECVL algorithms, to study their performance and bottlenecks, and to analyse their 
potential for being accelerated. 

3.1 Experimental setup 

The experimental setup used for the performance characterization is explained next, including the 
hardware description of the HPC infrastructures and the benchmark and input sets used in the 
experiments. 

3.1.1 HPC infrastructure hardware and software environment 

As described in the deliverable D1.2, the Barcelona Supercomputing Center (BSC) provides a set of 
HPC resources to study how the most relevant performance limitations of biomedical applications 
can be effectively removed on modern HPC infrastructures. BSC hosts several HPC machines, 
being Marenostrum 4 the most relevant one. Marenostrum 4 consists of 48 racks with 3456 nodes 
of two Intel Xeon Platinum chips, each with 24 cores running at 2.1 GHz. The whole cluster sums up 
a total of 165,888 processors and 390 Terabytes of main memory and is capable of reaching peak 
performance of 11.15 PetaFLOP/s. The nodes are interconnected by a low-latency Omnipath 
network with a fully connected fat-tree topology.  

Additionally, Marenostrum 4 is equipped with a cluster featuring emerging technologies that 
combines IBM POWER9 CPUs and NVIDIA Volta GPUs (V100). This cluster is composed of 54 
nodes, where each node is equipped with 2 POWER9 processors, 4 Volta GPUs and 6.4TB of 
NVMe. The nodes are like the ones in the Sierra supercomputer at Lawrence Livermore National 
Laboratories, which is the 3rd fastest supercomputer in the top500 list. This cluster is very suitable 
both for HPC and for machine learning workloads, as it reaches a peak performance of 1.57 
PetaFLOP/s in double precision computations. 

Both HPC infrastructures have the entire software ecosystem required to run ECVL. Table 1 shows 
the version of the GCC compiler, the OpenCV library and the OpenMP library used to perform the 
characterization experiments in both general purpose processors. In addition, several profiling tools 
have been used for the experimental evaluation and characterization of the ECVL library. Foremost, 
we have utilized the performance counters for Linux (PCL or perf) to access the hardware 
Performance Monitoring Counters (PMC), monitor specific kernel-based subsystem events, and 
collect high-level performance metrics (e.g., cycles and instructions executed per function). Also, the 
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profiling tool Intel® VTune™ Amplifier has been used on the Xeon platform to support further 
characterization experiments. In this evaluation, the VTune profiler has facilitated tracking 
multithreading synchronization and scalability problems, capturing specific PMCs of the Intel Xeon 
processor that is being used, and also understanding interactions between the critical computing 
kernels within the library. 

 Table 1: General purpose HPC processors for the ECVL evaluation 

Machine Compiler OpenCV OpenMP 

Intel Xeon GCC 9.2.0 4.1.1 4.5 (201511) 

IBM POWER9 GCC 9.2.0 4.1.1 4.5 (201511) 

3.1.2 ECVL core functionalities and input sets 

ECVL provides many functionalities to load, process and store images, which are essential 
components in a tool-chain of deep-learning models that focus on image classification and 
segmentation. In the context of DeepHealth, the ECVL library is used in the use cases mainly to 
perform data augmentation before feeding the deep-learning model. The data augmentation is a 
well-known and very important method to train visual recognition systems, and it gives the ability to 
increase the number of training examples in order to reduce overfitting and improve generalization. 

The ECVL library implements 19 kernels that are used during the data augmentation phase. Some 
of the kernels are implemented inside the ECVL library, while some other kernels rely on the 
implementation of the underlying OpenCV library. Typically, during the data augmentation phase, 
various kernels will process a batch of dozens or even hundreds of images in parallel. Driven by 
this, we create a benchmark that mimics this behaviour and allows us to characterize the 
performance of each function provided by ECVL separately. To do so, the benchmark does 
thousands of parallel ECVL kernel calls to the same image. Note that, with this grain of 
parallelization, each ECVL kernel call runs in a single thread, and we restrict the underlying 
OpenCV library to use only one thread. The general flow of the benchmark operation is as follows: 

 

The size of the input images is one of the most important factors for the performance 
characterization of the ECVL library. To have a complete understanding of its behaviour and to 
characterize how it performs with images of various sizes, we use three images with different sizes 
and shapes, as described in Table 2. 

Table 2: Input images size for the ECVL evaluation 

Image Width x Height x Channels Size 

Small (Test.jpg) 675 x 900 x 3 0.132MB 

Medium (Lena.png) 2048 x 2048 x 3  4.4MB 

Large (img0015.png) 3072 x 2048 x 3 10.7MB 
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3.2 Performance characterization on Intel Xeon processors 

This section presents the performance characterization of the ECVL library running on the HPC 
infrastructure with Intel Xeon processors. 

3.2.1 Execution time and scalability 

Figures 6, 7 and 8 show the performance scalability of the 19 kernels in the ECVL library when 
varying the number of OpenMP threads used in the benchmark for the small, medium and large 
images, respectively. 

The results for the small image (see Figure 6) show that 9 out of the 19 ECVL kernels (ResizeDim, 
Rotate2D, ChangeColorSpace, FindCounters, Filter2D, SeparableFilter2D, GaussianBlur, 
AdditiveLaplaceNoise and GammaContrast) present perfect or very good scalability, achieving more 
than 40x speedup with 48 threads. After these, another group of 5 kernels (ResizeScale, Flip2D, 
Mirror2D, RotateFullImage2D and CoarseDropout) show a reasonable scalability of 30x to 40x with 
48 threads. However, on the lower part of the plot, a group of 5 kernels (Threshold, 
ConnectedComponentsLabeling, Hconcat, Vconcat and Stack) suffer from poor scalability, as they 
achieve less than 20x speedup with 48 threads. These low-scaling kernels are very lightweight and 
take a very short time to process. 

The results for the medium and for the large images (shown in Figures 7 and 8, respectively) follow 
similar trends to the ones discussed for the small image. The scalability of some kernels improves 
slightly when the size of the image increases, up to the point where 12 kernels achieve a speedup 
of more than 40x with 48 threads and a large image. However, even with large images, 4 kernels 
present a reduced scalability of less than 20x with 48 threads.  

 

Figure 6: ECVL scalability results with the Intel Xeon processor and the small image input. 

 

Figure 7: ECVL scalability results with the Intel Xeon processor and the medium image input. 
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Figure 8: ECVL scalability results with the Intel Xeon processor and the large image input. 

The execution time per pixel is an interesting metric to study the weak scaling of the kernels of the 
ECVL library. This metric shows the time each kernel takes to process one pixel, and we compute it 
by measuring the execution time of each kernel and dividing the time by the number of pixels of the 
image that is being processed. Figure 9 shows the time per pixel of all the ECVL kernels for the 
three input sizes. The results show that all the kernels achieve very good weak scaling, as their time 
per pixel does not change significantly for the different input files. In addition, these results show 
that there are 2 kernels (AdditiveLaplaceN and GammaContrast) that have a much larger execution 
time than the rest of kernels, between 6 and 11 nanoseconds per pixel. Another group of 7 kernels 
(ResizeDim, ResizeScale, Rotate2D, RotateFullImage2, Filter2D, SeparableFilter2D, GaussianBlur) 
takes between 1 and 3 nanoseconds per pixel, while the rest of kernels take less than one 
nanoseconds per kernel. Note that the kernels that have a larger execution time are the same 
kernels that have a perfect or very good strong scalability, as shown in Figures 6, 7 and 8. 

 
Figure 9: ECVL execution time per pixel with the Intel Xeon processor and different input image sizes (small, 

medium and large). 
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3.2.2 Computing and memory intensity 

Figure 10 shows the instructions per cycle (IPC) of the ECVL kernels when using different numbers 
of threads. These results are measured with the large input file. We also measure the IPC of the 
kernels with the medium and the small input file but, since the results are practically identical, they 
are not included in this document. 

Results show that all the kernels but 3 (HConcat, VConcat and Stack) present large IPCs, more 
than 1.5 in all cases and up to 4.2 for Filter2D. In addition, in most of these kernels the IPC remains 
constant when increasing the number of threads, which indicates that the kernel has a very good 
scalability. Only 3 kernels (Mirror2D, ConnectedComponents and Threshold) suffer significant IPC 
degradations when increasing the number of threads. 

These results also show that 3 kernels (HConcat, VConcat and Stack) present an extremely low IPC 
of less than 0.2. These 3 kernels use two images as input and create one image as output, so they 
are very memory intensive and the computing intensity is very low. In addition, these 3 kernels have 
been identified before as very little time consuming and present a very poor scalability.  

 

Figure 10: ECVL instructions per cycle with the Intel Xeon processor and the large input image. 

Figure 11 shows the cache misses per 1 thousand instructions (MPKI) of the ECVL kernels when 
using different numbers of threads. These results are measured with the large input file. We also 
measure the MPKI of the kernels with the medium and the small input file, which are not included in 
this document because the results are practically identical. 

The last-level cache of the Intel Xeon processor is 32MB, so it can store the whole small, medium, 
and large input files. However, the private caches of each core in the Intel Xeon processor consist 
of a L1 of 32KB and a L2 of 1MB, so they can store the whole small image (132kB) but not the 
medium image (4.4MB) nor the large image (10.7MB). 

Results show that all the kernels included in the figure (HConcat, VConcat and Stack are not 
included) present very low MPKI ratios, 8 in ConnectedComponents and less than 4 in the rest of 
kernels. This indicates that the vast majority of the memory accesses are served by the cache 
hierarchy with a very low latency, providing data on time for the CPU to achieve very high IPC, as 
shown previously. It can also be observed that the MPKI experiences a minor growth when 
increasing the number of threads, which indicates that the kernel presents a very good scalability. 
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Only 3 kernels (Mirror2D, Threshold and ConnectedComponents) suffer significant IPC 
degradations when increasing the number of threads. 

3 of the ECVL kernels (HConcat, VConcat and Stack) present much larger MPKI ratios. These 
kernels are not included in Figure 11 for readability reasons, but their results are shown in Table 3. 
These 3 kernels use two images as input and create one image as output, so they are very memory 
intensive. The MPKI of these kernels varies between 45 and 210 when executing with 48 threads 
and different input sizes. Stack has the worst MPKI of 210 for the small file, and goes down to 72 
and 69 for medium and large inputs. HConcat and VConcat behave similarly, with respective MPKI 
of 72 and 80 for the small input and 45 to 50 for the medium and large inputs. 

 

Figure 11: ECVL cache misses per 1K instructions with the Intel Xeon processor and the large input image. 

 

Table 3: ECVL cache misses per 1K instructions with the Intel Xeon processor and different input image sizes 
(small, medium and large). 

 Cache misses per kilo instruction 

Kernel Small Medium Large 

HConcat 72.08 47.04 45.45 

VConcat 80.39 50.32 50.11 

Stack 210.14 72.52 69.89 

 

3.2.3 Scalability of fine-grain parallelization 

Next, we explore the possibility to exploit fine-grain parallelization. In this parallelization strategy we 
exploit parallelism inside the ECVL kernels, relying on the OpenCV parallel implementations of each 
kernel. To do so, we configure our benchmark with a single thread that sequentially calls the ECVL 
kernels, and we vary the number of OpenCV threads. 

Figure 12 shows the speedup obtained by the ECVL kernels when exploiting fine-grain parallelism 
with the large input image. It can be observed that the scalability of all the kernels is extremely poor. 
All kernels except 3 do not benefit from additional threads at all, while Rotate2D and ResizeScale 
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achieve less than 20% speedup with 48 threads, and RotateFullImage2D achieves 60% speedup 
with 48 threads. These 3 kernels use ECVL as a wrapper to call the OpenCV library. 

 

 

Figure 12: ECVL scalability results when exploiting fine-grain parallelization with the Intel Xeon processor and 
the large image input. 

 

3.3 Performance characterization on IBM POWER9 CPUs 

This section presents the performance characterization of the ECVL library running on the HPC 

infrastructure with IBM POWER9 processors. 

3.3.1 Execution time and scalability 

Figures 13, 14 and 15 show the performance scalability of the 19 kernels in the ECVL library when 
varying the number of OpenMP threads used in the benchmark for the small, medium and large 
images, respectively. 

The results for the small image (see Figure 13) show that the benchmarks scale moderately up to 
40 threads, reaching speedups of up to 25x. Adding more than 40 threads does not increase 
performance in any kernel but 2, AdditiveLaplaceNoise and GammaContrast, which achieve up to 
40x with 160 threads. Enlarging the input size improves the scalability significantly, as can be 
observed in Figure 14 and Figure 15. With the large image, 11 kernels benefit from adding more 
than 40 threads (lResizeDim, ResizeScale, Flip2D, Rotate2D, RotateFullImage2D, 
ChangeColorSpace, Filter2D, SeparableFilter2D, GaussianBlur, AdditiveLaplaceNoise and 
GammaContrast), reaching up to 45x with 160 threads in Rotate2D. 

 

 

Figure 13: ECVL scalability results with the IBM POWER9 processor and the small image input. 
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Figure 14: ECVL scalability results with the IBM POWER9 processor and the medium image input. 

 

 

Figure 15: ECVL scalability results with the IBM POWER9 processor and the large image input. 

 

To measure the weak scaling of the kernels we compute the execution time per pixel by measuring 
the execution time of each kernel and dividing the time by the number of pixels of the image that is 
being processed. Figure 16 shows the time per pixel of all the ECVL kernels for the three input 
sizes. The results show that most kernels achieve very good weak scaling, as the size of the input 
does not impact the time per pixel. As in the case of the Intel Xeon, there are 2 kernels 
(AdditiveLaplaceN and GammaContrast) that take much longer than the rest, between 6 and 12 
nanoseconds per pixel. Another group of 7 kernels (ResizeDim, ResizeScale, Rotate2D, 
RotateFullImage2, Filter2D, SeparableFilter2D, GaussianBlur) takes between 1 and 4 nanoseconds 
per pixel, and are the ones that show a worse weak scaling. The rest of the kernels take less than 
one nanoseconds per pixel. 
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Figure 16: ECVL execution time per pixel with the IBM POWER9 processor and different input image sizes 
(small, medium and large). 

3.3.2 Computing and memory intensity 

Figure 17 shows the instructions per cycle (IPC) of the ECVL kernels when using different numbers 
of threads. These results are measured with the large input file. We also measure the IPC of the 
kernels with the medium and the small input file but they are not presented in this document 
because the results are practically identical to the ones obtained with the large file. 

Results show that all the kernels but 3 (HConcat, VConcat and Stack) present large IPCs. With 
execution of up to 80 threads, the IPC is more than 1 in all cases and reaches a peak of 3.4 for 
ConnectedComponents. Adding 160 threads causes an IPC drop in many kernels, as expected 
from the bad scalability observed before. These results also confirm that HConcat, VConcat and 
Stack have very low IPC of less than 0.5, they are very little time consuming, and they present a 
very poor scalability. 

 

Figure 17: ECVL instructions per cycle with the IBM POWER9 processor and the large input image. 
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Figure 18 shows the cache misses per 1 thousand instructions (MPKI) of the ECVL kernels when 
using different numbers of threads. These results are measured with the large input file. The MPKI 
results with the medium and the small input file are practically identical to the ones presented with 
the large input file, so they are not included in this document. 

The last-level cache of the POWER9 processor is 10MB, so it can store the whole small, medium, 
and large input files. However, the private caches of each core consist of a L1 of 32KB and a L2 of 
512KB, so they can store the whole small image (132kB) but not the medium image (4.4MB) nor the 
large image (10.7MB). 

Results show that, with 40 threads or less, all the kernels except 3 have MPKI ratios lower than 3. 
HConcat, VConcat and Stack present moderately larger MPKI ratios, between 5 and 16 with no 
more than 40 threads. In all kernels, the MPKI grows significantly when increasing the number of 
threads to 80 and, specially, 160, reaching up to 36 MPKI in AddaptiveLaplace. This situation, that 
did not happen with the Intel Xeon processor, could be due to the synchronization overheads of 
adding threads that are idling.  

 

Figure 18: ECVL cache misses per 1K instruction with the IBM POWER9 processor and the large input 
image. 

3.4 Summary of the main characterization results 

The presented characterization of the kernels of the ECVL library has shown that most of the 
kernels present a good or very good performance on both Intel Xeon and IBM POWER9 
processors. In particular, most of the kernels are very computationally intensive and have low 
memory requirements, so they can be efficiently executed on high-performance CPUs and they 
achieve good or very good scalability when multiple kernel calls are executed in parallel on different 
cores. However, the multithreaded capabilities of the cores of IBM POWER9 processor do not 
provide significant advantages. On the other hand, we have identified three kernels that are less 
computationally intensive and present poor scalability, mainly because they are dominated by 
memory accesses that cannot be efficiently served by the cache hierarchy, as shown by their large 
MPKI ratio. 

Based on this analysis, we can conclude that most of the kernels can greatly benefit from the 
enhanced computational capabilities of heterogeneous systems such as GPUs and FPGAs. In 
addition, the heterogeneous HPC infrastructures used in the DeepHealth project equip advanced 
memory technologies like HBM, which can alleviate the bottleneck observed in the memory 
intensive kernels.  
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4 FPGA-based accelerated algorithms 

4.1 FPGA adaptation approach 

For the adaption of the ECVL to the FPGA we have used a similar approach to the one we have 
used for the EDDL (see D2.3). The ECVL offers a hardware abstraction layer that facilitates the 
deployment of ECVL in different hardware devices with a single interface. In particular, methods that 
operate on ECVL images will check the device where the image is located, and execute the 
transformation there. 

To ease the adaptation of ECVL to FPGAs we rely on the tools provided by Xilinx. We exploit the 
support for OpenCL provided by Xilinx to support the offloading process of ECVL kernels to the 
FPGA. However, the same philosophy can also be applied to other FPGA vendors providing 
OpenCL support.  

Usually, when programming heterogeneous computing platforms, a program is composed of two 
pieces of code. One piece of code runs on the host CPU, it is coded using a high-level programming 
language (e.g., C/C++) and it is in charge of initializing the device, transferring data, offloading 
kernels to the FPGA and getting kernel results back to the host. The other software part, also known 
as kernel, is the part of the application that runs on the FPGA devices, and it can be coded in a 
high-level programming language like OpenCL or C++ or with lower-level programming models like 
Verilog or VHDL. The kernel code must be compiled with a specific compiler for the target hardware 
platform. In particular, the Xilinx and Intel compilers are xocc and aoc, respectively.  

4.1.1 Target FPGA hardware 

One of the target HPC infrastructures for the ECVL/EDDL libraries is the MANGO prototype, which 
is documented in Deliverable D5.1. The prototype is made up of 96 high-end FPGAs connected 
through five end nodes. Currently, the prototype is being adapted to the project. Practically all the 
FPGAs are manufactured by Xilinx, which imposes the adoption of OpenCL as the programming 
language both for the host and for the kernels. The FPGA being manufactured in the project will 
target, however, an Intel FPGA. In this sense, the adoption of OpenCL is still valid as it can be used 
for the host, although the kernels will need to be refactored to HLS. In order to speed up kernel 
developments we also target a Xilinx Alveo board where kernels are coded and tested.  

4.1.2 Xilinx XfOpenCV 

The Xilinx XfOpenCV library provides a software interface for computer vision functions accelerated 
on an FPGA device. The main advantage of this library lies in that their functions are mostly similar 
in functionality to their OpenCV equivalent, apart from some documented deviations. As the CPU 
implementation of the ECVL library provides many functionalities that are also present in OpenCV, 
we use XfOpenCV to accelerate some of the ECVL kernels, since XfOpenCV provides highly 
optimized implementations of these kernels. 

To incorporate XfOpenCV in the Alveo board, and in general in any regular Xilinx board that is 
connected to a CPU using PCI express (like the ones in the MANGO cluster), we create a wrapper 
layer to convert xfOpenCV functions into Vitis kernels. As already explained in D5.1, Vitis is the 
latest software development tool provided by Xilinx to facilitate the use of FPGA-based acceleration. 

It is important to understand that, due to the inherent characteristics of FPGAs, XfOpenCV uses 
input images (xf::Mat instances) of a fixed size. Since we want to support different image sizes with 
the same hardware configuration, we call the XfOpenCV functions using a worst-case image size, 
thus generating the acceleration hardware for the biggest image size that we want to support. Then, 
in the wrapper layer we zero-pad the input image, bringing it to the maximum size and making it 
supported by the accelerator. Figure 19 illustrates how the wrapper works. The code inside the 
wrapper box is executed in the FPGAs. This code also includes profiling capabilities to measure 
times. The wrapper allows the user to pass parameters, call the XFOpencCV kernels, and store the 
results. 
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Figure 19: XfOpenCV wrapper. 

4.1.3 Types of kernels 

Currently, we use 6 implementations of kernels used in the ECVL library, which were briefly 
introduced in Deliverable D5.1. With these kernels we were able to identify the major types of 
kernels we need to implement and the major issues we faced when adapting the platform to the 
expected operability of the ECVL library (the same occurs for EDDL which is documented in 
Deliverable D2.3). Indeed, we found that some kernels can be efficiently coded based on the 
OpenCV library. Those kernels perform exactly the same functionality, but instead of using 
OpenCV, we use XFOpenCV, the Xilinx library optimized for FPGAs.  

We also found kernels that need to be coded manually as the implementations found in the ECVL 
library for CPU support are indeed coded manually. In this situation, we had to understand the 
functionality of the kernels and to find a compatible kernel in XFOpenCV library that performs the 
same work. Last, there are situations where we need to design totally custom kernels because there 
is no compatible support in XFOpenCV or because the XFOpenCV implementation cannot be used 
in our FPGAs due to lack of resources. 

Below we provide the list of kernels we have currently ported to FPGA and classify them as based 
on OpenCV, using XFOpenCV, and full-custom implementations.  

 Implemented kernels based on OpenCV: 

1) ResizeDimension based on cv::resize  

2) ResizeScale based on cv::resize 

3) Threshold based on cv::threshold  

 Implemented kernels only using XFOpenCV 

4) GaussianBlur based on cv::resize  

5) Rgb2gray based on cv::resize  

6) OtsuThreshold based on cv::resize  

 Custom kernels (in development for FPGA hardware, working in emulation): 

7) Flip2D  

8) Mirror2D 
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4.2 Description of the execution flow  

For the sake of understanding, we illustrate the flow we currently use to run the ECVL library on the 
FPGA. As an illustrative example, we select one kernel which is the ResizeDim kernel. 

We show three figures representing the execution flow. Figure 20 shows part of the code of the 
‘imgproc.cpp’ file. In this file all the kernels needed by the ECVL library are coded. This means a 
single file embeds all the expected kernels to be coded in any of the target devices (CPU, GPU and 
FPGA). In the case of FPGA support we added a compilation flag (through a define in C) that allows 
us to switch on all the functionality for the FPGA support. This flag is a temporal strategy that will be 
substituted by the HAL strategy defined within the DeepHealth project. Notice that the adaptation 
effort to the HAL will be minimal since all the kernels implemented for FPGAs will not be affected, 
and only the host side part will need some rework. However, for every kernel instantiated in the 
FPGA, the host side part will need the same type of modifications. Using the compilation flags 
allows us to start our activities even before the HAL strategy was defined within the project. 

The compilation switch, when enabled, allows all the host side parts for the FPGA support to be 
compiled. Instead, when the switch is disabled, the original code for the CPU is compiled. This 
enables us to compare the performance of both target devices for every kernel. 

For the ResizeDim kernel in the figure we perform the following adaptations. First we transform the 
incoming image into a matrix (cv::Mat). This enables both XFOpencv and OpenCV working 
seamlessly with the image. For this adaptation we need to carefully understand the format of the 
incoming image and the expected format for the XFOpencv and OpenCV library kernels. In our 
example, the incoming image has three channels (RGB) and the data types of each channel is 
unsigned char (8 bits) per pixel (CV_8UC). 

Once the input image is adapted, the OpenCV kernel is called. On completion, the result produced 
by the kernel is converted back to the expected format by ECVL. In fact, the produced matrix is 
converted back to an image format. 

 

Figure 20: Host code in imgproc.cpp, ResizeDim function. 
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The second step when coding FPGA support for ECVL is to provide a wrapper to every function that 
sends arguments to its kernel. The wrappers are coded in the ‘imgproc_fpga’ file and are executed 
on the host side prior to calling the kernels running on the FPGA. Every coded wrapper is 
implemented with a method. Figure 21 shows the function that implements the wrapper for the 
ResizeDim kernel. 

 

Figure 21: code in imgproc_fpga.cpp, ResizeDim function. 

The structure of this function is the one recommended by Xilinx in its XFOpenCV User Guide 
(2019.1 in our case). Our code is compiled and run on the host and provides the data and control 
signals to the attached hardware within the FPGA. The code in Figure 21 is written using OpenCL 
constructs and provides capabilities for setting up, and running a kernel on the FPGA. 

The code performs the following actions in the described order: 

1) Loading the kernel binary on the FPGA – xcl::import_binary_file() loads the bitstream and 
programs the FPGA to enable the required processing of data. 
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2) Setting up memory buffers for data transfer – Data needs to be sent and read from the DDR 
memory on the hardware. cl::Buffers are created to allocate required memory for transferring 
data to and from the hardware. 

3) Transfer data to and from the hardware –enqueueWriteBuffer() and enqueueReadBuffer() 
are used to transfer the data to and from the hardware at the required time. 

4) Execute kernel on the FPGA – There are functions to execute kernels on the FPGA. There 
can be single kernel execution or multiple kernel execution that could be asynchronous or 
synchronous with each other. Commonly used command is enqueueTask(). 

5) Profiling the performance of kernel execution – The host code in OpenCL also enables 
measurement of the execution time of a kernel on the FPGA. The function used in our 
examples for profiling is getProfilingInfo(). 

Having seen these features it is easy to identify the process in the figure. However, from 
completeness, the use of the next elements must be noted as well: 

a) To detect the device ‘u200’ it is used “xcl::get_xil_devices” with cl::Device and cl::Context. 
b) The kernel to run is selected with “cl::Kernel krnl(program,"resize_accel")”, knowing that the 

kernel is in the bitstream. 
c) Buffers “imageToDevice” and “imageFromDevice” respectively transfer the source image to 

the FPGA and collect the produced image when the kernel has finished. It is important to 
focus on the size of the buffer. In this case both have the same size: cols * rows * number of 
channels of the image (R+G+B). If the size is not exact, errors will be thrown. 

d) Buffers can also be instantiated to pass a value (e.g. an integer or a float variable) in which 
we will receive the result. 

e) The arguments received from the host code in ‘imgproc’ file are passed with “krnl.setArg” 
and the number of the argument. 

Notice that this example stresses the case of running one single kernel. For the practical case of 
ECVL running in a training process all the kernels needed will be loaded to the FPGA at the same 
time and the memory buffers will already reside in the FPGA memory. Thus, all these steps will be 
factored out. This integration will come with the FPGA support part for the EDDL library.. 

The last step is to define the wrapper code. This code will be loaded in the bitstream and therefore, 
executed on the FPGA. An example of this code is shown in Figure 22. 

All xfOpenCV kernels are provided with C++ function templates with image containers as objects of 
xf::Mat class. In addition, these kernels work either in stream based (where complete image is read 
continuously) or memory mapped (where image data access is in blocks), which is our case. 

SDAccel flow (OpenCL) requires kernel interfaces to be memory pointers with a width in power of 2. 
Thus, glue logic is required for converting memory pointers to xf::Mat class data type and vice-versa 
when interacting with XFOpenCV kernels. Wrappers are built over the kernels with this glue logic. 

To facilitate the conversion of pointers to xf::Mat and vice versa, two adapter functions are used as 
part of XFOpenCV: xf::Array2xfMat() and xf::xfMat2Array(). It is necessary for the xf::Mat objects to 
be invoked as streams using HLS pragmas with a minimum depth of 2. This is the reason why in the 
figure we convert ‘img_inp’ and ‘img_out’ arguments into ‘in_mat’ and ‘out_mat’ of xf::Mat. The Data 
Types ‘ap_uint’ are used because it is an enhancement type made for HLS with C++. It can be used 
as fixed point types like ‘ap_fixed’. However, it is not useful as Array2xfMat and xfMat2Array only 
accept unsigned or integer types, not float types.  

Other noticeable elements that can be seen in Figure 22 are HLS Interface pragmas at the 
beginning. The arguments of the wrapper are pointers and all of them are mapped to global 
memory. The data is accessed through AXI interfaces which can be mapped to different banks, 
which are buffer-like structures where the FPGA kernel will receive the data. The memory interface 
specification can be one of the following two: 
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1) The first approach is to define which argument the AXI (m_axi) memory map interface is 
accessed, that is why only the images or variables to load in the FPGA must be in this part. 
An offset is always required. The ‘offset=slave’ means that the offset of the array 
<variable_name> will be made available through the AXI slave interface of the kernel. The 
‘port’ means the argument that it is mapped to and ‘bundle=gmem’ refers to the DDR 
memory.  

2) The second approach is a pragma for the AXI Slave interface. Scalars (and pointer offsets) 
are mapped to one AXI Slave control interface which must be named control. Scalars are 
considered constant inputs and should also be mapped to s_axilite, such as integers, 
pointers to integers or other types, but always arguments not loaded in the FPGA. 

Finally, it is the call to the XFOpenCV Kernel, in Figure 22 “xf:resize”. The kernel does its work and 
returns the result in an “xf::Mat” structure, so through ‘xfMat2Array’, it is transformed and sent back 
to the host.  

The arguments of each kernel are different and can have variations, but in this example we use 
different constant variables like ‘HEIGHT’, ‘WIDTH’, ‘NEWHEIGHT’ and ‘NEWWIDTH’ that 
respectively specify the maximum input rows, input columns, output rows and output columns that 
the kernel can accept. 

Alternatively, if a grayscale image needs to be manipulated, the constant variable ‘TYPE’ will be 
XF_8UC1 (1 channel) and, depending of the number of pixels to be processed per cycle (NPC_T), 
possible options are XF_NPPC1 and XF_NPPC8 for 1 pixel and 8 pixel operations, respectively. 

Figure 22: code in ResizeDim wrapper. 

4.3 FPGA compilation tool flow 

The details about how to compile FPGA kernels are given in D5.1. However, it is important to 
mention that, for the examples provided in this deliverable, we have compiled ECVL kernels in a 
stand-alone manner. This means that each time we use a kernel we have to program the FPGA with 
the corresponding bitstream. For the final version of the FPGA support in the ECVL the bitstream 
will be programmed only once and it will contain all the kernels needed for a particular example. In 
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fact, we expect to co-host EDDL and ECVL kernels in the same bitstream, being the EDDL library 
the one in charge of loading the appropriate bitstream at initialization time.  

4.4 FPGA kernels performance 

We have evaluated the default performance of the kernels we have already successfully 
implemented in the FPGA. To ease the comparison with CPU results we have computed the time 
required per pixel for each of the kernels.  

Figure 23 shows time per pixel in nanoseconds for three different image sizes. The first thing we 
observe is that the performance per pixel is quite similar regardless of the image. Additionally, we 
also observe that the values for the FPGA implementation are similar than the ones provided by the 
CPU. However, while CPU relies on using threads to reduce the time to process an image, the 
FPGA offers other much fine grain optimizations that are able to improve performance in the ECVL 
kernels. 

 

Figure 23: ECVL execution time per Pixel with the FPGA and different input image sizes. 

Figure 24 shows the speedup obtained when implementing kernels using operators of 8 pixels 
width. To do so, we have to re-implement the kernels in the FPGA varying this parameter. As shown 
in the plot when increasing the parallelism at the pixel level we are able to improve performance 
significantly. In particular, we get an average speedup of 21,4 when using 8-pixel operators. 

 

Figure 24: Speedup using operators of 1 pixel/cycle against operators of 8 pixel/cycle. 

It is important to mention that, for the results shown above, we have also used two additional basic 
optimization options. The first one is the utilization of the HLS_DATAFLOW pragma. This pragma is 
useful to force the synthesis tool to implement concurrent kernel computations in a pipelined fashion 
allowing exploiting the maximum throughput provided by the kernel frequency. Time per pixel 
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results shown above do not benefit from this optimization since the results have been computed 
using only a single image. We will explore the impact of using batches of hundreds of images when 
integrating the ECVL library with the EDDL. The second optimization we have implemented is the 
utilization of two separate memory banks for input and output images to allow maximizing memory 
bandwidth. To do so, we have to specify different bundles to the parameter interfaces to ensure 
input and output buffers are mapped to different memory ports. 

 

4.5 FPGA resources used by kernels 

Table 4 summarizes the resources required by the kernels we have implemented and the maximum 
frequency we can achieve with each of them. These values have been collected for the 1 pixel 
operations in the ALVEO U200 using a target frequency of 300 MHz. As shown in the table, the 
amount of resources used by the kernels are rather limited. Note that the ALVEO U200 board has 

892 KLUTs, which means that none of the kernels requires more than 6% of the available 
resources. Additionally, we observe that some kernels are able to operate at higher 
frequencies. However, this usually comes at the expense of an increase in the hardware 
resources.  

Table 4: FPGA resource utilization by the ECVL kernels. 

Wrapper Name  Target 
Frequency 
 

Estimated 
Frequency 

 FF LUT DSP BRAM 

gaussian_accel 300.300293 300.029999 39472 53605 298 86 

resize_accel 300.300293 411.015198 18894 37320 21 87 

threshold_accel 300.300293 411.015198 6970 26075 16 40 

otsuThreshold_accel 300.300293 335.008392 11245 19465 65 34 

rgb2gray_accel 300.300293 411.015198 12356 51027 40 133 

 

4.6 Problems found and mitigation solutions 

The aim of this section is to explain some differences we had when trying to implement the 
wrappers. It is commented before the general example of a wrapper and its execution flow. 
However, in some situations, the code changes due to lack of resources on our FPGAs or special 
kernels that do not require images. That is the case of our Custom Kernels. 

To implement both cv:Flip and cv:Mirror OpenCV kernels there is an equivalent kernel in 
XFOpenCV called xf::Remap. However, when compiling, Remaps throws an error because there 
are not enough RAMB18 and RAMB36/FIFO cells (5264 are required but only 4320 compatible 
sites are available). Thus, we decided to implement these kernels manually and name them as 
‘custom’. 

The difference is basically that, inside the wrapper (Figure 25), we relocate the rows and columns 
so the output image is the mirror or flip. In addition, the kernel xf::Remap only works with images in 
grayscale and not with RGB. This eventually could be a problem for losing time converting a RGB 
image to grayscale and later from grayscale to RGB. This problem is solved with this custom 
implementation, but it has only been tested in software emulation. On top of this, the kernel 
xf::Remap does not support unsigned/signed integers as pixel Type of input images. This problem 
becomes important knowing that the functions ‘Array2xfMat’ and ‘xfMat2Array’ only accept 
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unsigned/signed integers, therefore the use of the kernel and the functions that transform the image 
into arrays to be processed are incompatible. 

 

Figure 25: Wrapper for the Flip kernel. 

4.7 Expected enhancements in the following months 

In the following months we will extend the FPGA support to the ECVL kernels that have not been 
yet integrated in the FPGA flow. Additionally, we will work on the performance optimization of the 
kernels by exploiting pixel-level parallelism beyond what the XFOpenCV is able to provide by 
developing full-custom implementation for certain computationally demanding kernels. Finally, we 
also expect to devote significant efforts in finding the most appropriate strategy to co-host EDDL 
and ECVL kernels in the FPGA. 

 

5 FPGA-based cluster 

Within the DeepHealth Project, there are different FPGA-based hardware infrastructures that we 
plan to evaluate as of an FPGA cluster: 

 MANGO hardware / Xilinx FPGAs + PCI Express extension kit 

 MANGO hardware / Intel FPGAs + PCI Express extension kit 

 DeepHealth PCI Express board  

The MANGO hardware is an outcome of the MANGO European project, which is currently being 
adapted to be used in the context of DeepHealth. Therefore, this section is focused on the 
DeepHealth PCI Express board. 

A high memory bandwidth of mid-size memories was identified as a key requirement for the new 
FPGA board to be developed for DeepHealth, especially for the acceleration of the functionalities of 
the EDDL library. Thus, we decide to use an FPGA with on-chip High Bandwidth Memory (HBM) for 
high bandwidth, as well as on-chip DDR4 memory for high capacity requirements. 

A second key requirement is the communication bandwidth between the FPGA and the host, as well 
as between several FPGA boards. PCI Express was selected as the communication interface with 
the host. This interface is supported by almost all HPC servers. 

The DeepHealth PCI Express board will implement the Intel Stratix-10 MX1650 or MX2100 FPGA. 
Both types are package and pin compatible. The MX2100 provides 16GByte of HBM memory and 
the MX1650 provides 8GByte of HMB memory. The MX2100 is the preferred choice and will be 
used for the first boards. The concept of the board is shown in Figure 26. To adopt the board to 
different applications, it provides several connectors to extend the capabilities in a modular way. 
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Figure 26: Concept of the DeepHealth FPGA board. 

The SODIMM connectors are used for memories and peripherals which are connected to regular 
FPGA I/Os. In DeepHealth, these SODIMM extension board sites can be used to attach additional 
memories to the FPGA depending on the application requirements. Examples of such memories are 
DDR4 memory or high speed SRAM memories to support random memory access with low latency. 

The Gigabit transceivers of the FPGA will be made available using the “proFPGA V2” connectors. 
These connectors allow data rates with more than 100 GBit/s per differential pair signal. Using 
these V2 connectors, interfaces like QSFP28 (see Figure 27) and Firefly can be attached, or 
connections to other FPGA boards using dedicated cables can be established. Those connectors 
allow scalability of the hardware in terms of capacity. 

 

Figure 27: Case study - Extensibility with QSFP28 interfaces. 
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For the communication with the host computer, two approaches will be supported: 

1. A performance and latency optimized PCI Express interface IP, which consists of a PCI 
Express controller, a Linux device driver, a software API and some service tools for 
configuration and status monitoring. The interface supports Xilinx and Intel in a way that the 
hardware API and software API are FPGA-type independent. 

2. The DeepHealth libraries also require using OpenCL and High-Level Synthesis (HLS) tools 
provided by the FPGA vendor. It was confirmed by Intel that these vendor tools can be 
adapted to a custom hardware. Based on this, it is assumed that OpenCL/HLS is supported 
by this PCI Express board. Some initial tests performed on the MANGO hardware prototype 
support this assumption. 

The board is currently under development. On-going tasks are circuit design, schematic and Printed 
Circuit Board (PCB) layout. Once the PCB layout is finished, the first boards will be manufactured 
and initially tested. In parallel, the implementation of the PCI Express controller is in progress. The 
upstream and downstream communication is up and running for Xilinx FPGAs. The next step is the 
implementation of the user interrupt and event handling. Finally, the Intel FPGA technology will be 
added. Both the board and the PCI Express controller are expected to be ready on Q4/2020. 

 

6 Conclusions  

This deliverable reports the activities performed so far in the task T3.2 “ECVL adaptation to 
heterogeneous HPC hardware”. The goal of this task is to deploy, analyse, and decide which are 
the most suitable strategies to use when porting the ECVL library to heterogeneous HPC platforms 
technologies, mainly focusing on CPUs, GPUs and FPGAs. The current deliverable will be updated 
in month 27 in the deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)”. 

Part of the work done focuses on the development of a solid ECVL library that can be automatically 
tested on different heterogeneous systems. Currently the ECVL library has been successfully 
deployed and tested on CPU-based systems, while the support for GPUs and FPGAs is under 
development. 

Multiple performance characterization studies have been done on HPC infrastructures with CPUs. 
As a result, the most time consuming algorithms of the ECVL library have been identified, and their 
scalability and main bottlenecks have been highlighted. Although the ECVL toolflow does not 
support GPUs and FPGAs yet, we have already started with the adaptation of some kernels of the 
ECVL library to FPGA-based systems, and the initial results show that the prototypes for these 
kernels are functionally correct and ready to be integrated in the ECVL library toolflow. The 
adaptation and characterization of the kernels to GPU-based systems will start once the ECVL 
toolflow supports these systems. 

In the next months we will focus our attention on GPU-based and FPGA-based implementations of 
the kernels that have not been adapted yet and on the integration of the different implementations in 
the ECVL library toolflow. The outcome of this work will be a complete implementation of the ECVL 
library for different heterogeneous HPC infrastructures, with special attention to the MANGO 
prototype and the DeepHealth FPGA board. The results of this work will be reported in the 
deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)” in month 27. 

 

 


