

This project has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 82511

D3.3 ECVL Hardware algorithms and
adaptation to HPC

Project ref. no. H2020-ICT-11-2018-2019 GA No. 825111

Project title Deep-Learning and HPC to Boost Biomedical
Applications for Health

Duration of the project 1-01-2019 – 31-12-2021 (36 months)

WP/Task: WP3/T3.2

Dissemination level: [PUBLIC]

Document due Date: 01/06/2020 (M17)

Actual date of delivery 12/06/2020 (M17)

Leader of this deliverable BSC

Author (s) Lluc Alvarez (BSC), Miquel Moreto (BSC),
Carles Hernandez (UPV), Jose Flich (UPV),
Michael Steinacker (PROD), Heiko
Mauersberger (PROD), Federico Bolelli
(UNIMORE), Constantino Grana (UNIMORE),
Tomas Teijeiro (EPFL), Marina Zapater (EPFL)

Version V4

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 2 of 28

Document history

Version Date Document history/approvals

1 13/05/2020 First draft contents to request for contributions

1.1 29/05/2020 Partner’s contributions received

2 01/06/2020 Version for review with all partners contributions

3 05/06/2020 Updated version after internal peer-review

4 12/06/2020 Version reviewed by Technical Manager and Project Coordinator

DISCLAIMER

This document reflects only the author's views and the European Community is not responsible for any
use that may be made of the information it contains.

Copyright

© Copyright 2019 the DEEPHEALTH Consortium

This work is licensed under the Creative Commons License “BY-NC-SA”.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 3 of 28

Table of contents

DOCUMENT HISTORY.. 2

TABLE OF CONTENTS .. 3

1 INTRODUCTION .. 4

2 SUPPORT FOR CONTINUOUS TESTING AND INTEGRATION ... 5

3 PERFORMANCE PROFILING AND CHARACTERIZATION WITH CPUS ... 8

3.1 EXPERIMENTAL SETUP ... 8
3.1.1 HPC infrastructure hardware and software environment ... 8
3.1.2 ECVL core functionalities and input sets ... 9

3.2 PERFORMANCE CHARACTERIZATION ON INTEL XEON PROCESSORS .. 10
3.2.1 Execution time and scalability ... 10
3.2.2 Computing and memory intensity ... 12
3.2.3 Scalability of fine-grain parallelization ... 13

3.3 PERFORMANCE CHARACTERIZATION ON IBM POWER9 CPUS ... 14
3.3.1 Execution time and scalability ... 14
3.3.2 Computing and memory intensity ... 16

3.4 SUMMARY OF THE MAIN CHARACTERIZATION RESULTS ... 17

4 FPGA-BASED ACCELERATED ALGORITHMS .. 18

4.1 FPGA ADAPTATION APPROACH ... 18
4.1.1 Target FPGA hardware .. 18
4.1.2 Xilinx XfOpenCV ... 18
4.1.3 Types of kernels ... 19

4.2 DESCRIPTION OF THE EXECUTION FLOW ... 20
4.3 FPGA COMPILATION TOOL FLOW .. 23
4.4 FPGA KERNELS PERFORMANCE ... 24
4.5 FPGA RESOURCES USED BY KERNELS .. 25
4.6 PROBLEMS FOUND AND MITIGATION SOLUTIONS... 25
4.7 EXPECTED ENHANCEMENTS IN THE FOLLOWING MONTHS .. 26

5 FPGA-BASED CLUSTER ... 26

6 CONCLUSIONS ... 28

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 4 of 28

1 Introduction

The European Computer Vision Library (ECVL)1 facilitates the integration and exchange of data
between existing state-of-the-art Computer Vision (CV) and image processing libraries. Moreover, it
provides new high-level CV functionalities thanks to specialized/accelerated versions of some CV
algorithms commonly employed in conjunction with Deep Learning (DL) algorithms. The algorithms
of ECVL are adapted to hardware accelerators (GPUs and FPGAs) in a user transparent way: the
Hardware Abstraction Layer (HAL) hides hardware specific implementations of image manipulation
functions. The user only decides which device should be used for the computation, moving the
concerned image objects and then calling different Application Programming Interface (API)
handlers that are the same for all hardware infrastructures.

The main objective of WP3 is to develop and deploy the ECVL library that is going to be used in the
use cases of the project. The work done for this deliverable is part of the task T3.2 “ECVL
adaptation to heterogeneous HPC hardware”, that aims at optimizing and adapting the most
relevant and time-consuming algorithms and methods deployed in the ECVL library to HPC
infrastructures with heterogeneous computing elements, namely high-end CPUs, GPUs, and
FPGAs. This task tackles the analysis of the algorithms of the ECVL library and their adaptation to
heterogeneous HPC infrastructures.

The work efforts of this task started at different project months and, because of that, some
developments have been active longer and have made further progress. It is important to highlight
that this deliverable has not been substantially impacted by the world-wide crisis related to the
COVID19 pandemic. However, many development and testing activities have suffered considerable
disruptions due to the strict restriction to access the workplace and reach the required facilities to
perform the tasks associated with this deliverable.

In this deliverable D3.3 “ECVL Hardware algorithms and adaptation to HPC”, we study the
performance characteristics of the main functionalities of the ECVL library on different HPC
infrastructures. This is currently an ongoing work that will be finished in month 27 and fully
described in the deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)”. The
organization of this deliverable is as follows:

 Section 2 describes the current support for testing and integration of the ECVL library.

 Section 3 characterizes the performance of the algorithms of the ECVL library on general
purpose processors.

 Section 4 presents the FPGA-based implementation of the algorithms of the ECVL library
and an early performance evaluation.

 Section 4 discusses the advances on the development of the DeepHealth FPGA board.

 Section 5 remarks the main conclusions of the work done for this deliverable.

1 ECVL code publicly available at https://github.com/deephealthproject/ecvl

https://github.com/deephealthproject/ecvl

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 5 of 28

2 Support for continuous testing and integration

One of the goals of the DeepHealth project is to develop an ECVL library that supports
heterogeneous hardware while keeping the same user interface. Therefore, hardware specific
implementations of image manipulation functions are hidden under a Hardware Abstraction Layer
(HAL). As a result, the user only decides which device should be used for the computation, moving
the concerned image objects with the Image.to(device) method, and then calls API handlers that
are common for all the types of hardware devices.

In order to make sure that the ECVL library is always in a correct state, we need to build it and run
tests on different environments after every commit. Since we do not want to perform this task
manually, we decided to use a continuous integration toolflow deployed on a specific server. There
are many different integration systems available, all of them with advantages and disadvantages.
Among them, we selected Jenkins2 for the following reasons:

1. It is successfully adopted by many big projects such as PyTorch, Netflix, Mozilla, Ubuntu,
Docker and many others.

2. It is completely open source and can be used to automate almost every process.
3. Jenkins is a self-contained, open source automation server which can be used to automate

all sorts of tasks related to building, testing, and delivering or deploying software. In the
specific case of ECVL, the automation pipeline must include the following steps:

a. Download the last version of the source code;
b. Build the code on multiple platforms and environments;
c. Perform tests on the same environments;
d. Generate the documentation and upload it to the website.

Figure 1: Example of Jenkins automated pipeline.

An example of pipeline is depicted in Figure 1. In the figure, it is possible to see four parallel
branches that are launched by the Jenkins master process and executed by slave containers. The
documentation stage is run at each commit, so that the automatic documentation is always updated
and aligned with the master branch. The third branch is run only at release time, to update the
"official" release documentation, which will be also available in the future. Then, two stages cover
Linux and Windows versions of the library. These consist of a building stage (with specific
compilers), a test phase using GTest suite, and only for the Windows pipeline a coverage stage to
analyse and report the percentage of code really tested in the previous stage. Each of these
pipelines are run both on CPU and GPU platforms, so that we can test the deployability of the ECVL
library on every platform. In the future, FPGA platforms will also be included in this pipeline.

2 https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258

https://wiki.jenkins.io/pages/viewpage.action?pageId=58001258

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 6 of 28

The configuration file for the pipeline, called Jenkinsfile, is included in the GitHub repository3, so that
it can be easily modified if the necessity occurs. Figure 2 shows a code snippet of the Jenkinsfile.

Figure 2: ECVL Jenkinsfile code example.

The automation server receives a notification from GitHub right after every push event and triggers
an execution of the pipeline. Detailed logs of the building and testing processes are available, and a
badge is exposed on the GitHub page of the projects, stating whether the last build was successful
or not. In order to build the project on more than one platform, we actually employ as many slaves
as needed alongside the master. The validation of pull requests is another function of Jenkins that
we use, to make sure that the master branch is not broken by the merging of other branches.

The diverse environments in which to build and test the ECVL library take the shape of Docker
containers. A container is a unit of software that packages up code and all its dependencies,
isolating them from the host environment. The reason for this choice is that it allows to choose,
modify, and keep track of every build environment in a flexible way, and we can instantiate any of
them in any machine where Docker can run. In fact, Jenkins downloads the appropriate Docker
images on the chosen slaves before the beginning of the pipeline. The Jenkins master server itself
runs inside a container, so that we can change the machine on which it runs with minimal effort.

Figures 3 and 4 list the currently tested environments in the ECVL library. As shown in these
figures, the CPU implementation of ECVL has been successfully tested with diverse operating
systems and compilers. In the next months, the GPU and the FPGA implementations will be
integrated and tested.

Currently, most of the effort in this part of the work is being put on the support for GPUs, which is
obtained by means of the NVIDIA Container Runtime. Jenkins can integrate with any tool that
provides a command-line interface, so the integration with FPGA boards is certainly feasible and will
be done in the future.

Of course, the lack of appropriate unit tests in the source code nullifies the effectiveness of a testing
framework. For this reason, the Jenkins server is integrated with a tool for reporting code coverage,
a measurement used to express which lines of code were executed by a test suite. For this task we
chose Codecov4. Code coverage reports are generated and shown for each commit. Figure 5
shows an example of such a coverage report.

3 Jenkinsfile available at https://github.com/deephealthproject/ecvl/blob/master/Jenkinsfile
4 https://codecov.io/

https://github.com/deephealthproject/ecvl/blob/master/Jenkinsfile
https://codecov.io/

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 7 of 28

.
Figure 3: CPU-based environments currently tested in ECVL.

Figure 4: GPU-based environments currently tested in ECVL.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 8 of 28

Figure 5: ECVL code coverage reports.

3 Performance profiling and characterization with CPUS

This section presents a performance characterization of the ECVL library on HPC infrastructures
with general purpose processors. The goal of this characterization is to identify the most time-
consuming ECVL algorithms, to study their performance and bottlenecks, and to analyse their
potential for being accelerated.

3.1 Experimental setup

The experimental setup used for the performance characterization is explained next, including the
hardware description of the HPC infrastructures and the benchmark and input sets used in the
experiments.

3.1.1 HPC infrastructure hardware and software environment

As described in the deliverable D1.2, the Barcelona Supercomputing Center (BSC) provides a set of
HPC resources to study how the most relevant performance limitations of biomedical applications
can be effectively removed on modern HPC infrastructures. BSC hosts several HPC machines,
being Marenostrum 4 the most relevant one. Marenostrum 4 consists of 48 racks with 3456 nodes
of two Intel Xeon Platinum chips, each with 24 cores running at 2.1 GHz. The whole cluster sums up
a total of 165,888 processors and 390 Terabytes of main memory and is capable of reaching peak
performance of 11.15 PetaFLOP/s. The nodes are interconnected by a low-latency Omnipath
network with a fully connected fat-tree topology.

Additionally, Marenostrum 4 is equipped with a cluster featuring emerging technologies that
combines IBM POWER9 CPUs and NVIDIA Volta GPUs (V100). This cluster is composed of 54
nodes, where each node is equipped with 2 POWER9 processors, 4 Volta GPUs and 6.4TB of
NVMe. The nodes are like the ones in the Sierra supercomputer at Lawrence Livermore National
Laboratories, which is the 3rd fastest supercomputer in the top500 list. This cluster is very suitable
both for HPC and for machine learning workloads, as it reaches a peak performance of 1.57
PetaFLOP/s in double precision computations.

Both HPC infrastructures have the entire software ecosystem required to run ECVL. Table 1 shows
the version of the GCC compiler, the OpenCV library and the OpenMP library used to perform the
characterization experiments in both general purpose processors. In addition, several profiling tools
have been used for the experimental evaluation and characterization of the ECVL library. Foremost,
we have utilized the performance counters for Linux (PCL or perf) to access the hardware
Performance Monitoring Counters (PMC), monitor specific kernel-based subsystem events, and
collect high-level performance metrics (e.g., cycles and instructions executed per function). Also, the

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 9 of 28

profiling tool Intel® VTune™ Amplifier has been used on the Xeon platform to support further
characterization experiments. In this evaluation, the VTune profiler has facilitated tracking
multithreading synchronization and scalability problems, capturing specific PMCs of the Intel Xeon
processor that is being used, and also understanding interactions between the critical computing
kernels within the library.

 Table 1: General purpose HPC processors for the ECVL evaluation

Machine Compiler OpenCV OpenMP

Intel Xeon GCC 9.2.0 4.1.1 4.5 (201511)

IBM POWER9 GCC 9.2.0 4.1.1 4.5 (201511)

3.1.2 ECVL core functionalities and input sets

ECVL provides many functionalities to load, process and store images, which are essential
components in a tool-chain of deep-learning models that focus on image classification and
segmentation. In the context of DeepHealth, the ECVL library is used in the use cases mainly to
perform data augmentation before feeding the deep-learning model. The data augmentation is a
well-known and very important method to train visual recognition systems, and it gives the ability to
increase the number of training examples in order to reduce overfitting and improve generalization.

The ECVL library implements 19 kernels that are used during the data augmentation phase. Some
of the kernels are implemented inside the ECVL library, while some other kernels rely on the
implementation of the underlying OpenCV library. Typically, during the data augmentation phase,
various kernels will process a batch of dozens or even hundreds of images in parallel. Driven by
this, we create a benchmark that mimics this behaviour and allows us to characterize the
performance of each function provided by ECVL separately. To do so, the benchmark does
thousands of parallel ECVL kernel calls to the same image. Note that, with this grain of
parallelization, each ECVL kernel call runs in a single thread, and we restrict the underlying
OpenCV library to use only one thread. The general flow of the benchmark operation is as follows:

The size of the input images is one of the most important factors for the performance
characterization of the ECVL library. To have a complete understanding of its behaviour and to
characterize how it performs with images of various sizes, we use three images with different sizes
and shapes, as described in Table 2.

Table 2: Input images size for the ECVL evaluation

Image Width x Height x Channels Size

Small (Test.jpg) 675 x 900 x 3 0.132MB

Medium (Lena.png) 2048 x 2048 x 3 4.4MB

Large (img0015.png) 3072 x 2048 x 3 10.7MB

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 10 of 28

3.2 Performance characterization on Intel Xeon processors

This section presents the performance characterization of the ECVL library running on the HPC
infrastructure with Intel Xeon processors.

3.2.1 Execution time and scalability

Figures 6, 7 and 8 show the performance scalability of the 19 kernels in the ECVL library when
varying the number of OpenMP threads used in the benchmark for the small, medium and large
images, respectively.

The results for the small image (see Figure 6) show that 9 out of the 19 ECVL kernels (ResizeDim,
Rotate2D, ChangeColorSpace, FindCounters, Filter2D, SeparableFilter2D, GaussianBlur,
AdditiveLaplaceNoise and GammaContrast) present perfect or very good scalability, achieving more
than 40x speedup with 48 threads. After these, another group of 5 kernels (ResizeScale, Flip2D,
Mirror2D, RotateFullImage2D and CoarseDropout) show a reasonable scalability of 30x to 40x with
48 threads. However, on the lower part of the plot, a group of 5 kernels (Threshold,
ConnectedComponentsLabeling, Hconcat, Vconcat and Stack) suffer from poor scalability, as they
achieve less than 20x speedup with 48 threads. These low-scaling kernels are very lightweight and
take a very short time to process.

The results for the medium and for the large images (shown in Figures 7 and 8, respectively) follow
similar trends to the ones discussed for the small image. The scalability of some kernels improves
slightly when the size of the image increases, up to the point where 12 kernels achieve a speedup
of more than 40x with 48 threads and a large image. However, even with large images, 4 kernels
present a reduced scalability of less than 20x with 48 threads.

Figure 6: ECVL scalability results with the Intel Xeon processor and the small image input.

Figure 7: ECVL scalability results with the Intel Xeon processor and the medium image input.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 11 of 28

Figure 8: ECVL scalability results with the Intel Xeon processor and the large image input.

The execution time per pixel is an interesting metric to study the weak scaling of the kernels of the
ECVL library. This metric shows the time each kernel takes to process one pixel, and we compute it
by measuring the execution time of each kernel and dividing the time by the number of pixels of the
image that is being processed. Figure 9 shows the time per pixel of all the ECVL kernels for the
three input sizes. The results show that all the kernels achieve very good weak scaling, as their time
per pixel does not change significantly for the different input files. In addition, these results show
that there are 2 kernels (AdditiveLaplaceN and GammaContrast) that have a much larger execution
time than the rest of kernels, between 6 and 11 nanoseconds per pixel. Another group of 7 kernels
(ResizeDim, ResizeScale, Rotate2D, RotateFullImage2, Filter2D, SeparableFilter2D, GaussianBlur)
takes between 1 and 3 nanoseconds per pixel, while the rest of kernels take less than one
nanoseconds per kernel. Note that the kernels that have a larger execution time are the same
kernels that have a perfect or very good strong scalability, as shown in Figures 6, 7 and 8.

Figure 9: ECVL execution time per pixel with the Intel Xeon processor and different input image sizes (small,

medium and large).

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 12 of 28

3.2.2 Computing and memory intensity

Figure 10 shows the instructions per cycle (IPC) of the ECVL kernels when using different numbers
of threads. These results are measured with the large input file. We also measure the IPC of the
kernels with the medium and the small input file but, since the results are practically identical, they
are not included in this document.

Results show that all the kernels but 3 (HConcat, VConcat and Stack) present large IPCs, more
than 1.5 in all cases and up to 4.2 for Filter2D. In addition, in most of these kernels the IPC remains
constant when increasing the number of threads, which indicates that the kernel has a very good
scalability. Only 3 kernels (Mirror2D, ConnectedComponents and Threshold) suffer significant IPC
degradations when increasing the number of threads.

These results also show that 3 kernels (HConcat, VConcat and Stack) present an extremely low IPC
of less than 0.2. These 3 kernels use two images as input and create one image as output, so they
are very memory intensive and the computing intensity is very low. In addition, these 3 kernels have
been identified before as very little time consuming and present a very poor scalability.

Figure 10: ECVL instructions per cycle with the Intel Xeon processor and the large input image.

Figure 11 shows the cache misses per 1 thousand instructions (MPKI) of the ECVL kernels when
using different numbers of threads. These results are measured with the large input file. We also
measure the MPKI of the kernels with the medium and the small input file, which are not included in
this document because the results are practically identical.

The last-level cache of the Intel Xeon processor is 32MB, so it can store the whole small, medium,
and large input files. However, the private caches of each core in the Intel Xeon processor consist
of a L1 of 32KB and a L2 of 1MB, so they can store the whole small image (132kB) but not the
medium image (4.4MB) nor the large image (10.7MB).

Results show that all the kernels included in the figure (HConcat, VConcat and Stack are not
included) present very low MPKI ratios, 8 in ConnectedComponents and less than 4 in the rest of
kernels. This indicates that the vast majority of the memory accesses are served by the cache
hierarchy with a very low latency, providing data on time for the CPU to achieve very high IPC, as
shown previously. It can also be observed that the MPKI experiences a minor growth when
increasing the number of threads, which indicates that the kernel presents a very good scalability.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 13 of 28

Only 3 kernels (Mirror2D, Threshold and ConnectedComponents) suffer significant IPC
degradations when increasing the number of threads.

3 of the ECVL kernels (HConcat, VConcat and Stack) present much larger MPKI ratios. These
kernels are not included in Figure 11 for readability reasons, but their results are shown in Table 3.
These 3 kernels use two images as input and create one image as output, so they are very memory
intensive. The MPKI of these kernels varies between 45 and 210 when executing with 48 threads
and different input sizes. Stack has the worst MPKI of 210 for the small file, and goes down to 72
and 69 for medium and large inputs. HConcat and VConcat behave similarly, with respective MPKI
of 72 and 80 for the small input and 45 to 50 for the medium and large inputs.

Figure 11: ECVL cache misses per 1K instructions with the Intel Xeon processor and the large input image.

Table 3: ECVL cache misses per 1K instructions with the Intel Xeon processor and different input image sizes
(small, medium and large).

 Cache misses per kilo instruction

Kernel Small Medium Large

HConcat 72.08 47.04 45.45

VConcat 80.39 50.32 50.11

Stack 210.14 72.52 69.89

3.2.3 Scalability of fine-grain parallelization

Next, we explore the possibility to exploit fine-grain parallelization. In this parallelization strategy we
exploit parallelism inside the ECVL kernels, relying on the OpenCV parallel implementations of each
kernel. To do so, we configure our benchmark with a single thread that sequentially calls the ECVL
kernels, and we vary the number of OpenCV threads.

Figure 12 shows the speedup obtained by the ECVL kernels when exploiting fine-grain parallelism
with the large input image. It can be observed that the scalability of all the kernels is extremely poor.
All kernels except 3 do not benefit from additional threads at all, while Rotate2D and ResizeScale

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 14 of 28

achieve less than 20% speedup with 48 threads, and RotateFullImage2D achieves 60% speedup
with 48 threads. These 3 kernels use ECVL as a wrapper to call the OpenCV library.

Figure 12: ECVL scalability results when exploiting fine-grain parallelization with the Intel Xeon processor and
the large image input.

3.3 Performance characterization on IBM POWER9 CPUs

This section presents the performance characterization of the ECVL library running on the HPC

infrastructure with IBM POWER9 processors.

3.3.1 Execution time and scalability

Figures 13, 14 and 15 show the performance scalability of the 19 kernels in the ECVL library when
varying the number of OpenMP threads used in the benchmark for the small, medium and large
images, respectively.

The results for the small image (see Figure 13) show that the benchmarks scale moderately up to
40 threads, reaching speedups of up to 25x. Adding more than 40 threads does not increase
performance in any kernel but 2, AdditiveLaplaceNoise and GammaContrast, which achieve up to
40x with 160 threads. Enlarging the input size improves the scalability significantly, as can be
observed in Figure 14 and Figure 15. With the large image, 11 kernels benefit from adding more
than 40 threads (lResizeDim, ResizeScale, Flip2D, Rotate2D, RotateFullImage2D,
ChangeColorSpace, Filter2D, SeparableFilter2D, GaussianBlur, AdditiveLaplaceNoise and
GammaContrast), reaching up to 45x with 160 threads in Rotate2D.

Figure 13: ECVL scalability results with the IBM POWER9 processor and the small image input.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 15 of 28

Figure 14: ECVL scalability results with the IBM POWER9 processor and the medium image input.

Figure 15: ECVL scalability results with the IBM POWER9 processor and the large image input.

To measure the weak scaling of the kernels we compute the execution time per pixel by measuring
the execution time of each kernel and dividing the time by the number of pixels of the image that is
being processed. Figure 16 shows the time per pixel of all the ECVL kernels for the three input
sizes. The results show that most kernels achieve very good weak scaling, as the size of the input
does not impact the time per pixel. As in the case of the Intel Xeon, there are 2 kernels
(AdditiveLaplaceN and GammaContrast) that take much longer than the rest, between 6 and 12
nanoseconds per pixel. Another group of 7 kernels (ResizeDim, ResizeScale, Rotate2D,
RotateFullImage2, Filter2D, SeparableFilter2D, GaussianBlur) takes between 1 and 4 nanoseconds
per pixel, and are the ones that show a worse weak scaling. The rest of the kernels take less than
one nanoseconds per pixel.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 16 of 28

Figure 16: ECVL execution time per pixel with the IBM POWER9 processor and different input image sizes
(small, medium and large).

3.3.2 Computing and memory intensity

Figure 17 shows the instructions per cycle (IPC) of the ECVL kernels when using different numbers
of threads. These results are measured with the large input file. We also measure the IPC of the
kernels with the medium and the small input file but they are not presented in this document
because the results are practically identical to the ones obtained with the large file.

Results show that all the kernels but 3 (HConcat, VConcat and Stack) present large IPCs. With
execution of up to 80 threads, the IPC is more than 1 in all cases and reaches a peak of 3.4 for
ConnectedComponents. Adding 160 threads causes an IPC drop in many kernels, as expected
from the bad scalability observed before. These results also confirm that HConcat, VConcat and
Stack have very low IPC of less than 0.5, they are very little time consuming, and they present a
very poor scalability.

Figure 17: ECVL instructions per cycle with the IBM POWER9 processor and the large input image.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 17 of 28

Figure 18 shows the cache misses per 1 thousand instructions (MPKI) of the ECVL kernels when
using different numbers of threads. These results are measured with the large input file. The MPKI
results with the medium and the small input file are practically identical to the ones presented with
the large input file, so they are not included in this document.

The last-level cache of the POWER9 processor is 10MB, so it can store the whole small, medium,
and large input files. However, the private caches of each core consist of a L1 of 32KB and a L2 of
512KB, so they can store the whole small image (132kB) but not the medium image (4.4MB) nor the
large image (10.7MB).

Results show that, with 40 threads or less, all the kernels except 3 have MPKI ratios lower than 3.
HConcat, VConcat and Stack present moderately larger MPKI ratios, between 5 and 16 with no
more than 40 threads. In all kernels, the MPKI grows significantly when increasing the number of
threads to 80 and, specially, 160, reaching up to 36 MPKI in AddaptiveLaplace. This situation, that
did not happen with the Intel Xeon processor, could be due to the synchronization overheads of
adding threads that are idling.

Figure 18: ECVL cache misses per 1K instruction with the IBM POWER9 processor and the large input
image.

3.4 Summary of the main characterization results

The presented characterization of the kernels of the ECVL library has shown that most of the
kernels present a good or very good performance on both Intel Xeon and IBM POWER9
processors. In particular, most of the kernels are very computationally intensive and have low
memory requirements, so they can be efficiently executed on high-performance CPUs and they
achieve good or very good scalability when multiple kernel calls are executed in parallel on different
cores. However, the multithreaded capabilities of the cores of IBM POWER9 processor do not
provide significant advantages. On the other hand, we have identified three kernels that are less
computationally intensive and present poor scalability, mainly because they are dominated by
memory accesses that cannot be efficiently served by the cache hierarchy, as shown by their large
MPKI ratio.

Based on this analysis, we can conclude that most of the kernels can greatly benefit from the
enhanced computational capabilities of heterogeneous systems such as GPUs and FPGAs. In
addition, the heterogeneous HPC infrastructures used in the DeepHealth project equip advanced
memory technologies like HBM, which can alleviate the bottleneck observed in the memory
intensive kernels.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 18 of 28

4 FPGA-based accelerated algorithms

4.1 FPGA adaptation approach

For the adaption of the ECVL to the FPGA we have used a similar approach to the one we have
used for the EDDL (see D2.3). The ECVL offers a hardware abstraction layer that facilitates the
deployment of ECVL in different hardware devices with a single interface. In particular, methods that
operate on ECVL images will check the device where the image is located, and execute the
transformation there.

To ease the adaptation of ECVL to FPGAs we rely on the tools provided by Xilinx. We exploit the
support for OpenCL provided by Xilinx to support the offloading process of ECVL kernels to the
FPGA. However, the same philosophy can also be applied to other FPGA vendors providing
OpenCL support.

Usually, when programming heterogeneous computing platforms, a program is composed of two
pieces of code. One piece of code runs on the host CPU, it is coded using a high-level programming
language (e.g., C/C++) and it is in charge of initializing the device, transferring data, offloading
kernels to the FPGA and getting kernel results back to the host. The other software part, also known
as kernel, is the part of the application that runs on the FPGA devices, and it can be coded in a
high-level programming language like OpenCL or C++ or with lower-level programming models like
Verilog or VHDL. The kernel code must be compiled with a specific compiler for the target hardware
platform. In particular, the Xilinx and Intel compilers are xocc and aoc, respectively.

4.1.1 Target FPGA hardware

One of the target HPC infrastructures for the ECVL/EDDL libraries is the MANGO prototype, which
is documented in Deliverable D5.1. The prototype is made up of 96 high-end FPGAs connected
through five end nodes. Currently, the prototype is being adapted to the project. Practically all the
FPGAs are manufactured by Xilinx, which imposes the adoption of OpenCL as the programming
language both for the host and for the kernels. The FPGA being manufactured in the project will
target, however, an Intel FPGA. In this sense, the adoption of OpenCL is still valid as it can be used
for the host, although the kernels will need to be refactored to HLS. In order to speed up kernel
developments we also target a Xilinx Alveo board where kernels are coded and tested.

4.1.2 Xilinx XfOpenCV

The Xilinx XfOpenCV library provides a software interface for computer vision functions accelerated
on an FPGA device. The main advantage of this library lies in that their functions are mostly similar
in functionality to their OpenCV equivalent, apart from some documented deviations. As the CPU
implementation of the ECVL library provides many functionalities that are also present in OpenCV,
we use XfOpenCV to accelerate some of the ECVL kernels, since XfOpenCV provides highly
optimized implementations of these kernels.

To incorporate XfOpenCV in the Alveo board, and in general in any regular Xilinx board that is
connected to a CPU using PCI express (like the ones in the MANGO cluster), we create a wrapper
layer to convert xfOpenCV functions into Vitis kernels. As already explained in D5.1, Vitis is the
latest software development tool provided by Xilinx to facilitate the use of FPGA-based acceleration.

It is important to understand that, due to the inherent characteristics of FPGAs, XfOpenCV uses
input images (xf::Mat instances) of a fixed size. Since we want to support different image sizes with
the same hardware configuration, we call the XfOpenCV functions using a worst-case image size,
thus generating the acceleration hardware for the biggest image size that we want to support. Then,
in the wrapper layer we zero-pad the input image, bringing it to the maximum size and making it
supported by the accelerator. Figure 19 illustrates how the wrapper works. The code inside the
wrapper box is executed in the FPGAs. This code also includes profiling capabilities to measure
times. The wrapper allows the user to pass parameters, call the XFOpencCV kernels, and store the
results.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 19 of 28

Figure 19: XfOpenCV wrapper.

4.1.3 Types of kernels

Currently, we use 6 implementations of kernels used in the ECVL library, which were briefly
introduced in Deliverable D5.1. With these kernels we were able to identify the major types of
kernels we need to implement and the major issues we faced when adapting the platform to the
expected operability of the ECVL library (the same occurs for EDDL which is documented in
Deliverable D2.3). Indeed, we found that some kernels can be efficiently coded based on the
OpenCV library. Those kernels perform exactly the same functionality, but instead of using
OpenCV, we use XFOpenCV, the Xilinx library optimized for FPGAs.

We also found kernels that need to be coded manually as the implementations found in the ECVL
library for CPU support are indeed coded manually. In this situation, we had to understand the
functionality of the kernels and to find a compatible kernel in XFOpenCV library that performs the
same work. Last, there are situations where we need to design totally custom kernels because there
is no compatible support in XFOpenCV or because the XFOpenCV implementation cannot be used
in our FPGAs due to lack of resources.

Below we provide the list of kernels we have currently ported to FPGA and classify them as based
on OpenCV, using XFOpenCV, and full-custom implementations.

 Implemented kernels based on OpenCV:

1) ResizeDimension based on cv::resize

2) ResizeScale based on cv::resize

3) Threshold based on cv::threshold

 Implemented kernels only using XFOpenCV

4) GaussianBlur based on cv::resize

5) Rgb2gray based on cv::resize

6) OtsuThreshold based on cv::resize

 Custom kernels (in development for FPGA hardware, working in emulation):

7) Flip2D

8) Mirror2D

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 20 of 28

4.2 Description of the execution flow

For the sake of understanding, we illustrate the flow we currently use to run the ECVL library on the
FPGA. As an illustrative example, we select one kernel which is the ResizeDim kernel.

We show three figures representing the execution flow. Figure 20 shows part of the code of the
‘imgproc.cpp’ file. In this file all the kernels needed by the ECVL library are coded. This means a
single file embeds all the expected kernels to be coded in any of the target devices (CPU, GPU and
FPGA). In the case of FPGA support we added a compilation flag (through a define in C) that allows
us to switch on all the functionality for the FPGA support. This flag is a temporal strategy that will be
substituted by the HAL strategy defined within the DeepHealth project. Notice that the adaptation
effort to the HAL will be minimal since all the kernels implemented for FPGAs will not be affected,
and only the host side part will need some rework. However, for every kernel instantiated in the
FPGA, the host side part will need the same type of modifications. Using the compilation flags
allows us to start our activities even before the HAL strategy was defined within the project.

The compilation switch, when enabled, allows all the host side parts for the FPGA support to be
compiled. Instead, when the switch is disabled, the original code for the CPU is compiled. This
enables us to compare the performance of both target devices for every kernel.

For the ResizeDim kernel in the figure we perform the following adaptations. First we transform the
incoming image into a matrix (cv::Mat). This enables both XFOpencv and OpenCV working
seamlessly with the image. For this adaptation we need to carefully understand the format of the
incoming image and the expected format for the XFOpencv and OpenCV library kernels. In our
example, the incoming image has three channels (RGB) and the data types of each channel is
unsigned char (8 bits) per pixel (CV_8UC).

Once the input image is adapted, the OpenCV kernel is called. On completion, the result produced
by the kernel is converted back to the expected format by ECVL. In fact, the produced matrix is
converted back to an image format.

Figure 20: Host code in imgproc.cpp, ResizeDim function.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 21 of 28

The second step when coding FPGA support for ECVL is to provide a wrapper to every function that
sends arguments to its kernel. The wrappers are coded in the ‘imgproc_fpga’ file and are executed
on the host side prior to calling the kernels running on the FPGA. Every coded wrapper is
implemented with a method. Figure 21 shows the function that implements the wrapper for the
ResizeDim kernel.

Figure 21: code in imgproc_fpga.cpp, ResizeDim function.

The structure of this function is the one recommended by Xilinx in its XFOpenCV User Guide
(2019.1 in our case). Our code is compiled and run on the host and provides the data and control
signals to the attached hardware within the FPGA. The code in Figure 21 is written using OpenCL
constructs and provides capabilities for setting up, and running a kernel on the FPGA.

The code performs the following actions in the described order:

1) Loading the kernel binary on the FPGA – xcl::import_binary_file() loads the bitstream and
programs the FPGA to enable the required processing of data.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 22 of 28

2) Setting up memory buffers for data transfer – Data needs to be sent and read from the DDR
memory on the hardware. cl::Buffers are created to allocate required memory for transferring
data to and from the hardware.

3) Transfer data to and from the hardware –enqueueWriteBuffer() and enqueueReadBuffer()
are used to transfer the data to and from the hardware at the required time.

4) Execute kernel on the FPGA – There are functions to execute kernels on the FPGA. There
can be single kernel execution or multiple kernel execution that could be asynchronous or
synchronous with each other. Commonly used command is enqueueTask().

5) Profiling the performance of kernel execution – The host code in OpenCL also enables
measurement of the execution time of a kernel on the FPGA. The function used in our
examples for profiling is getProfilingInfo().

Having seen these features it is easy to identify the process in the figure. However, from
completeness, the use of the next elements must be noted as well:

a) To detect the device ‘u200’ it is used “xcl::get_xil_devices” with cl::Device and cl::Context.
b) The kernel to run is selected with “cl::Kernel krnl(program,"resize_accel")”, knowing that the

kernel is in the bitstream.
c) Buffers “imageToDevice” and “imageFromDevice” respectively transfer the source image to

the FPGA and collect the produced image when the kernel has finished. It is important to
focus on the size of the buffer. In this case both have the same size: cols * rows * number of
channels of the image (R+G+B). If the size is not exact, errors will be thrown.

d) Buffers can also be instantiated to pass a value (e.g. an integer or a float variable) in which
we will receive the result.

e) The arguments received from the host code in ‘imgproc’ file are passed with “krnl.setArg”
and the number of the argument.

Notice that this example stresses the case of running one single kernel. For the practical case of
ECVL running in a training process all the kernels needed will be loaded to the FPGA at the same
time and the memory buffers will already reside in the FPGA memory. Thus, all these steps will be
factored out. This integration will come with the FPGA support part for the EDDL library..

The last step is to define the wrapper code. This code will be loaded in the bitstream and therefore,
executed on the FPGA. An example of this code is shown in Figure 22.

All xfOpenCV kernels are provided with C++ function templates with image containers as objects of
xf::Mat class. In addition, these kernels work either in stream based (where complete image is read
continuously) or memory mapped (where image data access is in blocks), which is our case.

SDAccel flow (OpenCL) requires kernel interfaces to be memory pointers with a width in power of 2.
Thus, glue logic is required for converting memory pointers to xf::Mat class data type and vice-versa
when interacting with XFOpenCV kernels. Wrappers are built over the kernels with this glue logic.

To facilitate the conversion of pointers to xf::Mat and vice versa, two adapter functions are used as
part of XFOpenCV: xf::Array2xfMat() and xf::xfMat2Array(). It is necessary for the xf::Mat objects to
be invoked as streams using HLS pragmas with a minimum depth of 2. This is the reason why in the
figure we convert ‘img_inp’ and ‘img_out’ arguments into ‘in_mat’ and ‘out_mat’ of xf::Mat. The Data
Types ‘ap_uint’ are used because it is an enhancement type made for HLS with C++. It can be used
as fixed point types like ‘ap_fixed’. However, it is not useful as Array2xfMat and xfMat2Array only
accept unsigned or integer types, not float types.

Other noticeable elements that can be seen in Figure 22 are HLS Interface pragmas at the
beginning. The arguments of the wrapper are pointers and all of them are mapped to global
memory. The data is accessed through AXI interfaces which can be mapped to different banks,
which are buffer-like structures where the FPGA kernel will receive the data. The memory interface
specification can be one of the following two:

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 23 of 28

1) The first approach is to define which argument the AXI (m_axi) memory map interface is
accessed, that is why only the images or variables to load in the FPGA must be in this part.
An offset is always required. The ‘offset=slave’ means that the offset of the array
<variable_name> will be made available through the AXI slave interface of the kernel. The
‘port’ means the argument that it is mapped to and ‘bundle=gmem’ refers to the DDR
memory.

2) The second approach is a pragma for the AXI Slave interface. Scalars (and pointer offsets)
are mapped to one AXI Slave control interface which must be named control. Scalars are
considered constant inputs and should also be mapped to s_axilite, such as integers,
pointers to integers or other types, but always arguments not loaded in the FPGA.

Finally, it is the call to the XFOpenCV Kernel, in Figure 22 “xf:resize”. The kernel does its work and
returns the result in an “xf::Mat” structure, so through ‘xfMat2Array’, it is transformed and sent back
to the host.

The arguments of each kernel are different and can have variations, but in this example we use
different constant variables like ‘HEIGHT’, ‘WIDTH’, ‘NEWHEIGHT’ and ‘NEWWIDTH’ that
respectively specify the maximum input rows, input columns, output rows and output columns that
the kernel can accept.

Alternatively, if a grayscale image needs to be manipulated, the constant variable ‘TYPE’ will be
XF_8UC1 (1 channel) and, depending of the number of pixels to be processed per cycle (NPC_T),
possible options are XF_NPPC1 and XF_NPPC8 for 1 pixel and 8 pixel operations, respectively.

Figure 22: code in ResizeDim wrapper.

4.3 FPGA compilation tool flow

The details about how to compile FPGA kernels are given in D5.1. However, it is important to
mention that, for the examples provided in this deliverable, we have compiled ECVL kernels in a
stand-alone manner. This means that each time we use a kernel we have to program the FPGA with
the corresponding bitstream. For the final version of the FPGA support in the ECVL the bitstream
will be programmed only once and it will contain all the kernels needed for a particular example. In

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 24 of 28

fact, we expect to co-host EDDL and ECVL kernels in the same bitstream, being the EDDL library
the one in charge of loading the appropriate bitstream at initialization time.

4.4 FPGA kernels performance

We have evaluated the default performance of the kernels we have already successfully
implemented in the FPGA. To ease the comparison with CPU results we have computed the time
required per pixel for each of the kernels.

Figure 23 shows time per pixel in nanoseconds for three different image sizes. The first thing we
observe is that the performance per pixel is quite similar regardless of the image. Additionally, we
also observe that the values for the FPGA implementation are similar than the ones provided by the
CPU. However, while CPU relies on using threads to reduce the time to process an image, the
FPGA offers other much fine grain optimizations that are able to improve performance in the ECVL
kernels.

Figure 23: ECVL execution time per Pixel with the FPGA and different input image sizes.

Figure 24 shows the speedup obtained when implementing kernels using operators of 8 pixels
width. To do so, we have to re-implement the kernels in the FPGA varying this parameter. As shown
in the plot when increasing the parallelism at the pixel level we are able to improve performance
significantly. In particular, we get an average speedup of 21,4 when using 8-pixel operators.

Figure 24: Speedup using operators of 1 pixel/cycle against operators of 8 pixel/cycle.

It is important to mention that, for the results shown above, we have also used two additional basic
optimization options. The first one is the utilization of the HLS_DATAFLOW pragma. This pragma is
useful to force the synthesis tool to implement concurrent kernel computations in a pipelined fashion
allowing exploiting the maximum throughput provided by the kernel frequency. Time per pixel

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 25 of 28

results shown above do not benefit from this optimization since the results have been computed
using only a single image. We will explore the impact of using batches of hundreds of images when
integrating the ECVL library with the EDDL. The second optimization we have implemented is the
utilization of two separate memory banks for input and output images to allow maximizing memory
bandwidth. To do so, we have to specify different bundles to the parameter interfaces to ensure
input and output buffers are mapped to different memory ports.

4.5 FPGA resources used by kernels

Table 4 summarizes the resources required by the kernels we have implemented and the maximum
frequency we can achieve with each of them. These values have been collected for the 1 pixel
operations in the ALVEO U200 using a target frequency of 300 MHz. As shown in the table, the
amount of resources used by the kernels are rather limited. Note that the ALVEO U200 board has

892 KLUTs, which means that none of the kernels requires more than 6% of the available
resources. Additionally, we observe that some kernels are able to operate at higher
frequencies. However, this usually comes at the expense of an increase in the hardware
resources.

Table 4: FPGA resource utilization by the ECVL kernels.

Wrapper Name Target
Frequency

Estimated
Frequency

 FF LUT DSP BRAM

gaussian_accel 300.300293 300.029999 39472 53605 298 86

resize_accel 300.300293 411.015198 18894 37320 21 87

threshold_accel 300.300293 411.015198 6970 26075 16 40

otsuThreshold_accel 300.300293 335.008392 11245 19465 65 34

rgb2gray_accel 300.300293 411.015198 12356 51027 40 133

4.6 Problems found and mitigation solutions

The aim of this section is to explain some differences we had when trying to implement the
wrappers. It is commented before the general example of a wrapper and its execution flow.
However, in some situations, the code changes due to lack of resources on our FPGAs or special
kernels that do not require images. That is the case of our Custom Kernels.

To implement both cv:Flip and cv:Mirror OpenCV kernels there is an equivalent kernel in
XFOpenCV called xf::Remap. However, when compiling, Remaps throws an error because there
are not enough RAMB18 and RAMB36/FIFO cells (5264 are required but only 4320 compatible
sites are available). Thus, we decided to implement these kernels manually and name them as
‘custom’.

The difference is basically that, inside the wrapper (Figure 25), we relocate the rows and columns
so the output image is the mirror or flip. In addition, the kernel xf::Remap only works with images in
grayscale and not with RGB. This eventually could be a problem for losing time converting a RGB
image to grayscale and later from grayscale to RGB. This problem is solved with this custom
implementation, but it has only been tested in software emulation. On top of this, the kernel
xf::Remap does not support unsigned/signed integers as pixel Type of input images. This problem
becomes important knowing that the functions ‘Array2xfMat’ and ‘xfMat2Array’ only accept

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 26 of 28

unsigned/signed integers, therefore the use of the kernel and the functions that transform the image
into arrays to be processed are incompatible.

Figure 25: Wrapper for the Flip kernel.

4.7 Expected enhancements in the following months

In the following months we will extend the FPGA support to the ECVL kernels that have not been
yet integrated in the FPGA flow. Additionally, we will work on the performance optimization of the
kernels by exploiting pixel-level parallelism beyond what the XFOpenCV is able to provide by
developing full-custom implementation for certain computationally demanding kernels. Finally, we
also expect to devote significant efforts in finding the most appropriate strategy to co-host EDDL
and ECVL kernels in the FPGA.

5 FPGA-based cluster

Within the DeepHealth Project, there are different FPGA-based hardware infrastructures that we
plan to evaluate as of an FPGA cluster:

 MANGO hardware / Xilinx FPGAs + PCI Express extension kit

 MANGO hardware / Intel FPGAs + PCI Express extension kit

 DeepHealth PCI Express board

The MANGO hardware is an outcome of the MANGO European project, which is currently being
adapted to be used in the context of DeepHealth. Therefore, this section is focused on the
DeepHealth PCI Express board.

A high memory bandwidth of mid-size memories was identified as a key requirement for the new
FPGA board to be developed for DeepHealth, especially for the acceleration of the functionalities of
the EDDL library. Thus, we decide to use an FPGA with on-chip High Bandwidth Memory (HBM) for
high bandwidth, as well as on-chip DDR4 memory for high capacity requirements.

A second key requirement is the communication bandwidth between the FPGA and the host, as well
as between several FPGA boards. PCI Express was selected as the communication interface with
the host. This interface is supported by almost all HPC servers.

The DeepHealth PCI Express board will implement the Intel Stratix-10 MX1650 or MX2100 FPGA.
Both types are package and pin compatible. The MX2100 provides 16GByte of HBM memory and
the MX1650 provides 8GByte of HMB memory. The MX2100 is the preferred choice and will be
used for the first boards. The concept of the board is shown in Figure 26. To adopt the board to
different applications, it provides several connectors to extend the capabilities in a modular way.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 27 of 28

Figure 26: Concept of the DeepHealth FPGA board.

The SODIMM connectors are used for memories and peripherals which are connected to regular
FPGA I/Os. In DeepHealth, these SODIMM extension board sites can be used to attach additional
memories to the FPGA depending on the application requirements. Examples of such memories are
DDR4 memory or high speed SRAM memories to support random memory access with low latency.

The Gigabit transceivers of the FPGA will be made available using the “proFPGA V2” connectors.
These connectors allow data rates with more than 100 GBit/s per differential pair signal. Using
these V2 connectors, interfaces like QSFP28 (see Figure 27) and Firefly can be attached, or
connections to other FPGA boards using dedicated cables can be established. Those connectors
allow scalability of the hardware in terms of capacity.

Figure 27: Case study - Extensibility with QSFP28 interfaces.

 D3.3: ECVL Hardware algorithms and adaptation to HPC

GA-No 825111 Page 28 of 28

For the communication with the host computer, two approaches will be supported:

1. A performance and latency optimized PCI Express interface IP, which consists of a PCI
Express controller, a Linux device driver, a software API and some service tools for
configuration and status monitoring. The interface supports Xilinx and Intel in a way that the
hardware API and software API are FPGA-type independent.

2. The DeepHealth libraries also require using OpenCL and High-Level Synthesis (HLS) tools
provided by the FPGA vendor. It was confirmed by Intel that these vendor tools can be
adapted to a custom hardware. Based on this, it is assumed that OpenCL/HLS is supported
by this PCI Express board. Some initial tests performed on the MANGO hardware prototype
support this assumption.

The board is currently under development. On-going tasks are circuit design, schematic and Printed
Circuit Board (PCB) layout. Once the PCB layout is finished, the first boards will be manufactured
and initially tested. In parallel, the implementation of the PCI Express controller is in progress. The
upstream and downstream communication is up and running for Xilinx FPGAs. The next step is the
implementation of the user interrupt and event handling. Finally, the Intel FPGA technology will be
added. Both the board and the PCI Express controller are expected to be ready on Q4/2020.

6 Conclusions

This deliverable reports the activities performed so far in the task T3.2 “ECVL adaptation to
heterogeneous HPC hardware”. The goal of this task is to deploy, analyse, and decide which are
the most suitable strategies to use when porting the ECVL library to heterogeneous HPC platforms
technologies, mainly focusing on CPUs, GPUs and FPGAs. The current deliverable will be updated
in month 27 in the deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)”.

Part of the work done focuses on the development of a solid ECVL library that can be automatically
tested on different heterogeneous systems. Currently the ECVL library has been successfully
deployed and tested on CPU-based systems, while the support for GPUs and FPGAs is under
development.

Multiple performance characterization studies have been done on HPC infrastructures with CPUs.
As a result, the most time consuming algorithms of the ECVL library have been identified, and their
scalability and main bottlenecks have been highlighted. Although the ECVL toolflow does not
support GPUs and FPGAs yet, we have already started with the adaptation of some kernels of the
ECVL library to FPGA-based systems, and the initial results show that the prototypes for these
kernels are functionally correct and ready to be integrated in the ECVL library toolflow. The
adaptation and characterization of the kernels to GPU-based systems will start once the ECVL
toolflow supports these systems.

In the next months we will focus our attention on GPU-based and FPGA-based implementations of
the kernels that have not been adapted yet and on the integration of the different implementations in
the ECVL library toolflow. The outcome of this work will be a complete implementation of the ECVL
library for different heterogeneous HPC infrastructures, with special attention to the MANGO
prototype and the DeepHealth FPGA board. The results of this work will be reported in the
deliverable D3.4 “ECVL Hardware algorithms and adaptation to HPC (II)” in month 27.

