
D3.1 ECVL Library

Project ref. no. H2020-ICT-11-2018-2019 GA No. 825111

Project title
Deep-Learning and HPC to Boost Biomedical

Applications for Health

Duration of the project 1-01-2019 – 31-12-2021 (36 months)

WP/Task: WP3/ T3.1, T3.5

Dissemination level: PUBLIC

Document due Date: 31/05/2020 (M17)

Actual date of delivery: 08/06/2020 (M17)

Leader of this deliverable UNIMORE

Author(s) Costantino Grana, Federico Bolelli

Michele Cancilla, Laura Canalini,

Stefano Allegretti

Version 1.0

This project has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 82511

D3.1 ECVL Library

Document history

Version Date Document history/approvals

0.1 26/05/2020 First draft contents

0.2 03/06/2020 Corrections made after internal review

0.3 08/06/2020 Corrections after a second internal review

1.0 08/06/2020 Definitive

DISCLAIMER

This document reflects only the author’s views and the European Community is not responsible for any
use that may be made of the information it contains.

Copyright
c© Copyright 2019 the DEEPHEALTH Consortium

This work is licensed under the Creative Commons License “BY-NC-SA”.

GA-No 825111 Page 2 of 12

D3.1 ECVL Library

Table of contents

Document history 2

Table of contents 3

Executive summary 4

1 Introduction 5
1.1 ECVL development . 5
1.2 Continuous Integration . 6
1.3 PyECVL development . 6

2 ECVL environment 10
2.1 EDDLL–ECVL pipeline . 10
2.2 Backend . 11

3 Conclusion 12

GA-No 825111 Page 3 of 12

D3.1 ECVL Library

Executive summary

In this document we briefly describe the development of European Computer Vision Library (ECVL), in order
to make a quick overview of the software which can be found publicly available in the corresponding GitHub
repository (github.com/deephealthproject/ecvl). The library is the result of the work carried out in tasks
T3.1 and T3.5 of WP3.

The current development of the library covers the most important scheduled CPU-side features: image
reading/writing, image manipulation, integration to/from EDDLL and support for image augmentations. More-
over, a very effective hardware abstraction layer strategy has been integrated into ECVL, allowing the imple-
mentation of GPU and FPGA functionality.

The rest of the document is organized as follows: Section 1 summarizes the objectives of the ECVL and its
development. In Section 2 we describe some standalone projects which use ECVL. Finally, Section 3 gives a
brief evaluation of the current development.

GA-No 825111 Page 4 of 12

https://github.com/deephealthproject/ecvl

D3.1 ECVL Library

Listing 1: ECVL Hardware Abstraction Layer
class HardwareAbstractionLayer

{

public:

static HardwareAbstractionLayer* Factory(Device dev, bool shallow = false);

virtual uint8_t* MemAllocate(size_t nbytes) = 0;

virtual void MemDeallocate(uint8_t* data) = 0;

virtual uint8_t* MemCopy(uint8_t* dst, const uint8_t* src, size_t nbytes) = 0;

virtual uint8_t* MemAllocateAndCopy(size_t nbytes, const uint8_t* src)

{

return MemCopy(MemAllocate(nbytes), src, nbytes);

}

...

virtual void ResizeDim(const Image& src, Image& dst, const std::vector<int>& newdims, InterpolationType interp)

{ ECVL_ERROR_NOT_IMPLEMENTED }

virtual void ResizeScale(const Image& src, Image& dst, const std::vector<double>& scales, InterpolationType

interp) { ECVL_ERROR_NOT_IMPLEMENTED }

virtual void Flip2D(const Image& src, Image& dst) { ECVL_ERROR_NOT_IMPLEMENTED }

...

1 Introduction

The main objective of the European Computer Vision Library (ECVL) is to facilitate the integration and ex-
change of data between existing Computer Vision (CV) and image processing libraries, while also providing
new high-level Computer Vision functionality thanks to specialized/accelerated versions of some CV algorithms
commonly used in combination with Deep Learning (DL) algorithms. ECVL algorithms will also be adapted to
hardware accelerators.

The library will provide support for multiple operating systems and provide multiple types of scientific imag-
ing data and data formats, with particular reference to medical imaging data formats. The fundamental im-
portance of the library will be the availability of a common infrastructure that will allow the development of
distributed image analysis activities.

The design of ECVL takes into account the objective to allow easy integration and exchange of data be-
tween existing cutting-edge libraries and their interconnection with EDDLL. Indeed, the Image object, which
represents the core of the entire library, has been designed to provide an easy interfacing between EDDLL
Tensor and ECVL Image.

Moreover, the library includes some of the computer vision algorithms which are most commonly employed
in conjunction with deep learning algorithms, in order to provide specialized/accelerated versions for use with
EDDLL.

The source code of the library is publicly available at github.com/deephealthproject/ecvl.
This document will not include documentations about ECVL and PyECVL due to their lengthening. Any-

way, the documentations are accessible at deephealthproject.github.io/ecvl and deephealthproject.

github.io/pyecvl , where the ECVL one offers the browsing of both releases and developing documenta-
tions.

1.1 ECVL development

In order to guarantee optimal performance ECVL has been developed with C++ programming language, ex-
ploiting the recent features offered by the C++ 17 standard. The Image class that is the generic tensor model
chosen provides a simple but effective hardware abstraction layer (HAL). In fact, if the platform employed
supports devices like GPU or FPGA, ECVL can also run on these devices.

The extracted chunk of code in Listing 1 shows that HardwareAbstractionLayer class uses generic functions
for managing memory or applying functions allowing a great flexibility for devices differentiation.

Moreover, the list of functions developed and their status can be monitored at github.com/deephealthproject/
ecvl/blob/master/PROGRESS.md, while Figure 3 displays a snapshots of the web page taken at M17.

GA-No 825111 Page 5 of 12

https://github.com/deephealthproject/ecvl
https://deephealthproject.github.io/ecvl
https://deephealthproject.github.io/pyecvl
https://deephealthproject.github.io/pyecvl
https://github.com/deephealthproject/ecvl/blob/master/PROGRESS.md
https://github.com/deephealthproject/ecvl/blob/master/PROGRESS.md

D3.1 ECVL Library

Figure 1: ECVL 3D Slices Visualizer

ECVL has been designed to hold different kind of images with diverse channels configurations. This Image
attribute can contain values like ‘x’, ‘y’, and ‘z’ for horizontal, vertical, and depth spatial dimension or ‘c’ for
color dimension, ‘t’ for temporal one or, finally, ‘o’ indicates any other dimension.

In order to show the handling of 3D volumes, such as CT scans, the visualizer in Figure 1 has been
created. This application is portable through different operating systems and allows to observe different slices
of a volume from different views.

Furthermore, Figure 2 presents an image editor, powered by ECVL with some of the core library functional-
ity. The software exploits wxWidgets, which is a cross-platform GUI library, to allow easy imaging editing such
as adjust contrast and brightness, or rotate, mirror, and flip, or threshold and negate.

The above-mentioned examples have been open-sourced and are downloadable at https://github.com/
deephealthproject/ecvl-applications.

1.2 Continuous Integration

Continuous Integration (CI) is the practice of merging in small code changes frequently - rather than merging
in a large change at the end of a development cycle. The goal is to build healthier software by developing and
testing in smaller increments. The ECVL development embraces this philosophy testing the code on different
systems with different C++ compilers. Figure 4 shows the matrix of building employed for the library. Two
main CI platform have been employed for ECVL: an open source internal one based on Jenkins (jenkins-
master-deephealth-unix01.ing.unimore.it) and second one run by Travis CI (travis-ci.com/github/
deephealthproject/ecvl).

These CI platforms support the development process by automatically building and testing code changes,
providing immediate feedback on the success of the change.

1.3 PyECVL development

PyECVL is the Python wrapper for ECVL. It has been generated by using pybind11, a lightweight header-only
library that exposes C++ types in Python and vice versa, mainly to create Python bindings of existing C++
code. Its goals and syntax are similar to the excellent Boost. Python library by David Abrahams: to minimize

GA-No 825111 Page 6 of 12

https://github.com/deephealthproject/ecvl-applications
https://github.com/deephealthproject/ecvl-applications
https://jenkins-master-deephealth-unix01.ing.unimore.it
https://jenkins-master-deephealth-unix01.ing.unimore.it
https://travis-ci.com/github/deephealthproject/ecvl
https://travis-ci.com/github/deephealthproject/ecvl

D3.1 ECVL Library

Figure 2: ECVL Imaging Editor Tool

boilerplate code in traditional extension modules by inferring type information using compile-time introspection.
The following core C++ features have been mapped to Python

1. Functions accepting and returning custom data structures per value, reference, or pointer
2. Instance methods and static methods
3. Overloaded functions
4. Instance attributes and static attributes
5. Arbitrary exception types
6. Enumerations
7. Callbacks
8. Iterators and ranges

Listing 2: PyECVL Example code
import numpy as np
import pyecvl.ecvl as ecvl

def inc brightness(img, rate) :
a = np.array(img, copy=False)
max val = np. iinfo (a.dtype).max
a[a > max val − rate] = max val
a[a <= max val − rate] += rate

def main():
img = ecvl.ImRead("test.jpg")
inc brightness(img, 10)
ecvl .ImWrite("test_mod.jpg", img)

if name == "__main__":
main()

GA-No 825111 Page 7 of 12

D3.1 ECVL Library

Figure 3: ECVL Progress Snapshot at M17

9. Custom operators
10. Single and multiple inheritance
11. STL data structures
12. Smart pointers with reference counting like std::shared ptr
13. Internal references with correct reference counting
14. C++ classes with virtual (and pure virtual) methods can be extended in Python

Listing 2 shows a short example of how ECVL can be used with Python.
The PyECVL documentation is available at deephealthproject.github.io/pyecvl.
By default, PyECVL assumes a complete ECVL installation, including optional modules (except for the GUI),

and builds bindings for all of them. You can disable support for specific modules via environment variables. For
instance, let us assume ECVL is installed with no OpenSlide support: by default, PyECVL will try to build the
bindings for OpenSlide-specific ECVL tools and link the OpenSlide library, which might not even be present on
your system. To avoid this, set the ECVL WITH OPENSLIDE environment variable to OFF (or FALSE) before building
PyECVL. Similarly, you can turn off DICOM and EDDL support by setting ECVL WITH DICOM and ECVL EDDL to
OFF.

GA-No 825111 Page 8 of 12

https://deephealthproject.github.io/pyecvl

D3.1 ECVL Library

Figure 4: ECVL Continuous Integration Matrix

GA-No 825111 Page 9 of 12

D3.1 ECVL Library

2 ECVL environment

The development of the library produced several related projects as output. This Section lists activities which
make use of ECVL and shows part of its functionality.

2.1 EDDLL–ECVL pipeline

The cooperation between EDDLL and ECVL is one of the main requirements of the DeepHealth project. The
repository in github.com/deephealthproject/use_case_pipeline shows the full capabilities of these two
libraries and their combined effort.

In details this repository contains four pipeline examples using EDDLL and ECVL to train a Convolutional
Neural Network on three different datasets (MNIST, ISIC and Pneumothorax), applying different image aug-
mentations, for both classification and segmentation tasks.

The ISIC dataset refers to the datasets released for two different challenges:

• Skin Lesion Segmentation — challenge2018.isic-archive.com

• Skin Lesion Classification — challenge2019.isic-archive.com

Furthermore, the Pneumothorax pipeline has been taken from the kaggle.com/c/siim-acr-pneumothorax-

segmentation challenge hosted on kaggle.
The Figure 5 shows the prediction of our ISIC and Pneumothorax EDDLL–ECVL pipelines. The first row

(Figure 5a) shows the predicted segmentation on some samples of skin lesions dermoscopic images. On the
other hand, the Figure 5b displays the recognition of pneumothorax disease on three different chest radio-
graphic images.

(a) Red polygons, which are output of neural network, delimit the regions of interest (skin lesion).

(b) Pneumothorax segmentation masks where red indicates the prediction area, green is the ground truth, and yellow shows their
intersection.

Figure 5: Output of ISIC and Pneumothorax EDDLL–ECVL pipelines.

GA-No 825111 Page 10 of 12

https://github.com/deephealthproject/use_case_pipeline
https://challenge2018.isic-archive.com
https://challenge2019.isic-archive.com
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

D3.1 ECVL Library

2.2 Backend

The DeepHealth toolkit (DHt), which is a core objective of the project, is composed by three main components,
the two libraries ECVL and EDDLL plus a front-end. However, the DHt can be thought as a software module
that is divided into two parts, one visible to the user (a.k.a. graphical user interface–GUI) through a web
browser (Firefox, Chrome, Edge, ...) and one invisible part (backend) that performs all the actions indicated
by the user through the font-end in order to run the functionality provided by both libraries. The strength of
backend, developed in T3.1 and T3.4, is that it can run on server instances which can be deployed as Linux
containers defined and created using Docker and orchestrated using Kubernetes.

GA-No 825111 Page 11 of 12

D3.1 ECVL Library

3 Conclusion

The development of the ECVL and its Python version PyECVL are in progress according to the work plan. The
advancements have been done in strict collaboration with partners, resulting in interesting outcomes, such as
the public EDDLL–ECVL pipeline repository and the backend framework.

The library needs to be enlarged, for example adding more support to GPU and FPGA devices, and refined
checking whether if some bottlenecks limit the global performance.

GA-No 825111 Page 12 of 12

	Document history
	Table of contents
	Executive summary
	Introduction
	ECVL development
	Continuous Integration
	PyECVL development

	ECVL environment
	EDDLL–ECVL pipeline
	Backend

	Conclusion

