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1 Executive Summary 

This report for D2.6 presents the results from the activities of T2.4, EDDLL Adaptation to Cloud 
Environments. The goal of this task was to extend the EDDL library and related components of the 
DeepHealth toolkit to make it straightforward to use them on cloud computing resources, including 
scenarios featuring multi-cloud or hybrid HPC + cloud infrastuctures. The importance of making 
DeepHealth compatible with cloud-native infrastructures, given the growth in adoption and availability 
of this type of resource, has been recognized since the inception of the project – in fact, the project 
includes this type of activity to target both the EDDLL and the companion ECVL library (T3.3 - ECVL 
Adaptation to cloud environments).  

A discussion around several important factors has taken the consortium to decide to target the 
Kubernetes container orchestrator as the DeepHealth cloud execution platform, instead of targeting 
bare infrastructure as a service. This decision was motivated by factors such as the need to avoid 
vendor lock-in due to incompatibilities between cloud services and the requirement to work with 
software containers. Thus, a full spectrum of solutions has been delivered to run the EDDLL and the 
rest of the DeepHealth toolkit on the Kubernetes platform. At the lower level, Docker container images 
have been provided. At a higher level, the DeepHealth front end has been ported to the cloud and the 
DeepHealth libraries have been integrated into the ODH platform and the StreamFlow workflow 
manager, offering ready-to-use cloud-enabled solutions for expert users. From a scalability 
perspective, the EDDLL has been extended to be able to efficiently exploit large-scale multi-cloud and 
hybrid cloud infrastructures, and cloud resources have been made available to consortium partners 
through the deployment of on-premise private cloud. Finally, continuous integration pipelines have 
been put in place to ensure that as the development of the DeepHealth libraries continues, those 
improvements will be automatically integrated into new container images so that the solutions 
described in this document remain up-to-date and sustainable in time. 

Further, the advancement of the DeepHealth project has revealed it advantageous to adopt a solution 
where the EDDLL and ECVL tightly interoperate within the DeepHealth toolkit. Thus, while the original 
project workplan structured the respective activities T2.4 and T3.3 as independent entities, in our 
implementation we have gone beyond the objective of enabling the use of each individual library on 
the cloud and have aimed for the goal of enabling the use of both DeepHealth libraries together, for 
the creation of complete cloud-enabled state-of-the-art deep learning pipelines. 

A final note regarding the impact of the COVID-19 pandemic on the activities relavant to this report. 
Fortunately, the pandemic has only had minor effects on these activities, mostly in terms of slightly 
reduced productivity due to the total absence of face-to-face interaction between collaborators and 
also as individuals work to manage personal situations caused by the imposed restrictions (e.g., 
closed schools and daycares). Nevertheless, the consortium has still been able to effectively organize 
its efforts and deliver these results according to schedule. 

2 Introduction 

This deliverable reports on the outcomes of the activities in Task 2.4, which aimed to facilitate and 
demonstrate the use of the DeepHealth EDDLL on cloud computing infrastructure. Since the inception 
of the DeepHealth project, facilitating the use of the DeepHealth toolkit on cloud infrastructure has 
been recognised as strategic. Cloud resources provisioned as a service are flexible, scalable, elastic, 
programmable and accessible with low up-front capital investment. Thus, the cloud is an important 
source of computing power for many usage scenarios - including deep learning applications. 

In the DeepHealth project, the discussion around how to best support the use of the EDDLL and the 
entire DeepHealth toolkit on cloud computing resources resulted in the decision to target the 
Kubernetes (k8s) container orchestrator as the cloud execution platform instead of targeting bare 
infrastructure as a service. This decision was motivated by several important factors. First, 
Kubernetes provides a platform that is agnostic to the underlying cloud provider. The growing adoption 
of cloud computing resources has motivated growing support for the main open cloud provisioning 
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solution (OpenStack1) and the entrance into the market of many commercial vendors. While similar 
in many ways, these solutions each provide their own flavour of cloud resources that are not 
compatible with each other. Therefore, software must typically be adapted to work with each one for 
which compatibility is desired. Targeting the k8s platform puts the DeepHealth toolkit on a level above 
these compatibility problems and makes it automatically usable with any common infrastructure as a 
service provider. In fact, k8s has become a de facto standard distributed container orchestration 
platform. It is already offered as a managed service by many cloud vendors, and for those users that 
need to deploy their own k8s cluster community-supported tools with support for different cloud 
providers already exist (e.g., KubeSpray2, Kops3). A second important reason for targeting 
Kubernetes is to allow the cloud adaptation of the DeepHealth toolkit to be based around software 
containers rather than virtual machines. Software containers have been demonstrated to be a 
modular, flexible and efficient approach to deploying software, and they can be used in both cloud 
and HPC scenarios. The Kubernetes platform, being a container orchestrator, treats containers as 
first-class citizens and thus greatly facilitates their use in complex scenarios. Finally, some of the 
DeepHealth use case platforms use Kubernetes or containers, so targeting these cloud technologies 
facilitates the uptake of the solutions created in these activities into those platforms and their related 
use cases. 

Thus, the overarching goal of the DeepHealth cloud adaptation activities has been to enable the use 
of the DeepHealth toolkit on Kubernetes-based and hybrid Kubernetes-HPC computing 
infrastructures. The structure of this report mirrors the activities that have been carried out to achieve 
this goal, focusing on aspects particularly relevant to the EDDLL. Specifically, Section 2.3 describes 
the on-premise Kubernetes cluster that has been deployed to ensure access to cloud resources to 
consortium members. Section 3 describes the container images that have been created for the 
various DeepHealth toolkit components and the continuous integration system that has been put in 
place to automatically generate new images as development of the EDDLL, PyEDDLL and other 
DeepHealth components continues throughout the project. In Section 4 we describe how PyEDDLL 
has been extended to support distributed operation on Kubernetes clusters as well as simultaneously 
using Kubernetes and HPC computing resources. Next, Section 5 describes how we have provided 
DeepHealth functionality through the Streamflow framework on the Open DeepHealth (ODH) cloud 
platform, providing users with the means to declaritively define deep learning workflows that leverage 
the DeepHealth libraries in a platform as a service context. Finally, Section 6 provides an analysis of 
the efficiency costs paid for the adoption of a high-level containerized platform such as Kubernetes 
for performing a compute-intensive activity such as deep learning. 

2.1 Relation to D3.6 - ECVL Adaptation to Cloud Environments 

As an introductory note, it is important to highlight the relation between this report and the 
complementary report D3.6 ECVL Adaptation to Cloud Environments. While the original DeepHealth 
work plan structures the EDDLL- and ECVL-related activities as distinct entities, advancement in the 
project has revealed it advantageous to adopt a solution where the EDDLL and ECVL tightly 
interoperate within the DeepHealth toolkit. For instance, consider how any image-based DeepHealth 
model training or inference process performed by the EDDLL is accompanied by image and dataset 
manipulation actions performed by the ECVL (e.g., dataset loading, splitting, image augmentation, 
etc.). Thus, it follows that a common concerted cloud adaptation effort for the entire DeepHealth toolkit 
was required from tasks T2.4 and T3.3 – rather than creating stand-alone solutions for each library. 
As a consequence, the results of the EDDLL- and ECVL-specific tasks T2.4 and T3.3, which are 
respectively reported in this D2.6 and D3.6, are in many ways analogous as they solve the extended 
problem of facilitating the use of both the EDDLL and the ECVL together on the cloud. In the interest 
of avoiding content duplication, when deemed appropriate these analogous results are described in 

                                                
1 Sefraoui, Omar, Mohammed Aissaoui, and Mohsine Eleuldj. "OpenStack: toward an open-source solution for 
cloud computing." International Journal of Computer Applications 55, no. 3 (2012): 38-42. 
2 https://github.com/kubernetes-sigs/kubespray 
3 https://github.com/kubernetes/kops 

https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes/kops
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detail in only one of the two reports, while the other presents a summary. Specifically, in this report 
Section 4.2 presents a summary of the work done to adapt the DeepHealth front end for training 
models for use on cloud resources, while the full solution is described in D3.6. 

2.2 Brief Kubernetes Background 

Kubernetes is a distributed container and microservice platform that orchestrates computing, 
networking and storage infrastructure to support user workloads. Software containers have been 
demonstrated to provide a good way to bundle and deploy applications. However, as application 
complexity increases – e.g., complex multi-component software applications, multi-node clusters, etc. 
– running deployments becomes increasingly difficult. Kubernetes supports the automation of much 
of the work required to maintain and operate such complex services in a distributed environment. It 
orchestrates the deployment of containers across cluster nodes, matching heterogenous resource 
requirements and availability. It provides self-healing, automatically restarting or moving workloads 
away from broken computing nodes. Moreover, it provides a standard platform that can be deployed 
on any modern computing infrastructure and thus enables portability across infrastructure providers. 

A k8s cluster is composed of one or more master nodes and a set of worker nodes (see Figure 1). 
Nodes may be virtual or physical machines, depending on the deployment scenario. Multiple master 
nodes can be used to provide high availability and to scale to larger numbers of worker nodes 
(according to its documentation, k8s can scale up to about 5000 worker nodes before its performance 
begins to degrade). The Kubernetes master nodes run essential cluster services (e.g., controller 
manager, scheduler, etcd, API server) and form the cluster's control plane. On the other hand, worker 
nodes run the user-scheduled containerized workloads in units called pods. A pod is the smallest 
deployable object in k8s; it encapsulates one or more tightly coupled software containers (e.g,. 
Docker) that share resources, including a single IP address. Kubernetes' main services communicate 
directly through the cluster network, while all pods are directly connected to a virtual overlay network 
which exists only within the cluster (see Figure 1). This design allows all pods within the k8s cluster 
to directly address each other without resorting to Network Address Translation (NAT) even with very 
large numbers of pods (k8s supports running up to 150,000 pods in the same cluster before 
performance can begin to suffer). 

 

 

Figure 1 High-level Kubernetes cluster architecture. Boxes denoted as “Pn'' are pods running on worker nodes. 
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To implement the overlay network Kubernetes we can use any of a number of plugins compatible with 
the Container Network Interface (CNI). As an example, consider Flannel4. Flannel allocates a subnet 
to each host participating in the overlay network from which pod IP addresses can be allocated5. 
Flannel agents run on each host in the Kubernetes cluster provide a TUN virtual network device for 
each pod in the Kubernetes cluster. In typical Flannel-based configuration, IP traffic between the pods 
on the same node is routed directly through a bridge network device managed by the container 
engine. On the other hand, traffic between pods on different hosts is encapsulated by the flannel 
agent on the pod's host and transmitted to the destination host through a standard Linux VXLAN – 
which encapsulates traffic in UDP datagrams – or potentially other mechanism (e.g., cloud-specific 
plugins); at the destination the corresponding Flannel agent interprets the packet and delivers it to the 
addressed overlay network device connected to the pod through the container engine's bridge. 

2.3 DeepHealth On-Premise Cloud 

As part of the DeepHealth activities, an on-premise DeepHealth cloud, consisting of a Kubernetes 
cluster, has been created to ensure access to cloud resources to consortium members; its 
architecture is shown in Figure 2. The cloud has been configured by TREE on their on-premise 
computing infrastructure. The computing resources provisioned for the cloud are flexible and can be 
modified as the project demands vary. It is built on commodity hardware and, as the project demands, 
GPU computing capabilities will be added – both through provisioning on the on-premise cluster and 
via nodes provisioned on vendor clouds (e.g., AWS). In fact, within the activities in Task 5.6 Design 
and hybrid cloud computing solution to support DeepHealth libraries, a hybrid platform will be 
constructed consisting of a Kubernetes cluster on-premise and another a second one running on 
Amazon Web Services (AWS) using Amazon Elastic Kubernetes Service (EKS) technology. At the 
time of this writing both use Kubernetes version 1.14. 

 

Figure 2 On-Premise cloud. 

Furthermore, a high-level REST API has been developed on top of the k8s API to help abstracting the 
user from the infrastructure itself, simplifying the deployment and management of the workflows. It 
provides functions of varying complexity, from simple ones, like listPods, to more complex ones such 
as exposePods – which implements functionality abstracting the user from the potentially complex 
configuration of the clusters (e.g., multi-cloud, hybrid cloud, etc.). The API itself can support the 
addition of new k8s clusters both on-premise and in the cloud from any provider with the limitation of 
having a minimum k8s version of 1.14. To guarantee properly authenticated and authorized access 
to the DeepHealth cloud on TREE’s infrastructure, connection through a VPN is required to access 
the API (which responds to the domain name deehealth.treelogic.com).  

                                                
4 https://github.com/coreos/flannel  
5 Marmol, Victor, Rohit Jnagal, and Tim Hockin. "Networking in containers and container clusters." Proceedings 
of netdev 0.1 (2015). 

https://github.com/coreos/flannel
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Moreover, the DeepHealth cloud API supports the addition of new Kubernetes clusters to the platform 
using Azure Kubernetes Service (AKS) and Google Kubernetes Engine (GKE), as well as other on-
premise clusters as long as they are all run the same version of k8s. The architecture of an example 
hybrid cloud environment composed of on-premise and AWS computing resources is illustrated in 
Figure 3. 

 

Figure 3 Hybrid Cloud Environment 

2.3.1 Rancher 

To support these clusters, an open-source Rancher multi-cluster orchestration platform was used6. 
Rancher allows managing the operational and security challenges on multiple Kubernetes clusters 
across any infrastructure. Its web interface provides control over deployments, jobs, pipelines, 
including an app catalog for fast deployment using the Helm software package manager7. Additionally, 
Rancher extends these best practices through automation and by making complex configurations 
easier to build. 

Within a multi-cloud or hybrid-cloud context, a tool is needed to facilitate management and security 
tasks, as this can become a very error-prone and tedious task, while resources and Kubernetes 
clusters grow. Rancher meets these requirements, and after studying other similar tools (such as 
OpenShift), Rancher was chosen. With Rancher one can easily provision a new cluster in another 
provider and begin migrating workloads, all from within the same interface. 

Rancher ships with tools for monitoring clusters, dashboards for visualizing metrics, an engine for 
generating alerts and sending notifications, a pipeline system to enable CI/CD for those not already 
using an external system. With a click it ships logs off to Elasticsearch, Kafka, Fluentd, Splunk, or 
syslog. 

 

2.3.2 API Services 

As previously mentioned, the DeepHealth cloud API was developed to facilitate the use and/or 
integration of the libraries with the Kubernetes platform. For its correct operation, the provisioned 
computing resources – by they in an on-premise cluster or an external cloud – must be described in 
its configuration. For users to access the API endpoint8 provided by the DeepHealth cloud, VPN 
access is required to TREE’s computing infrastructure where the service runs. A simple procedure 

                                                
6 https://rancher.com/docs/rancher/v2.x/en/  
7 https://helm.sh/ 
8 http://deephealth.treelogic.com/ 

https://rancher.com/docs/rancher/v2.x/en/
https://helm.sh/
http://deephealth.treelogic.com/
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has been set up through which consortium members can request access. In this case, the API will act 
as a bridge between the DeepHealth cloud running on TREE and the COMPs (available in BSC), to 
deploy the EDDLL library in this cluster.  

 

Figure 4 Once the VPN connection is established, the DeepHealth cloud API dashboard can be accessed. 

Naturally, the API can be deployed in any environment. For that, a Docker image was created and is 
available in the DeepHealth’s Docker-Hub repository9. In addition, this API has been defined with the 
OpenAI specification10. 

In the DeepHealth’s GitHub, in the deephealth-k8s repository, a JSON file can be found, which can 
be used by REST clients to generate clients to be consumed11. 

In Figure 5 the different methods implemented in the API are listed. The next sub-sections describe 
the different resources and verbs provided by the REST API and how to use them. 

 

Figure 5 Methods implemented by the API. 

In order to work with Kubernetes' cluster of Azure or Google, slight changes must be made to the API. 
Within WP5 we will evaluate if it is necessary to include AKS and GKE technologies in the project. 
Currently, using AWS the needs of the project are covered.  

  

                                                
9 https://hub.docker.com/r/dhealth/deephealth-api 
10 https://swagger.io/docs/specification/about/  
11 https://github.com/deephealthproject/deephealth-k8s/blob/master/openapi/api-docs.json  

https://hub.docker.com/r/dhealth/deephealth-api
https://swagger.io/docs/specification/about/
https://github.com/deephealthproject/deephealth-k8s/blob/master/openapi/api-docs.json
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 Create Services 

With this resource new services can be created. Input parameters are:  

 Namespace: Namespaces give a scope for names. Resource names must be unique within 
a namespace, but not between namespaces. Namespaces cannot be nested within each other 
and each Kubernetes resource can only be found in one namespace. 

 Pod: Name of the existing pod. 

 Port: number of port to be exposed.  

 Cluster: List of k8s clusters in which this method will be available. Options: currently only 
{aws}. In the coming months, {onpremise} will be available.  

 HTTP request: /api/createServices/{namespace}/{pod}/{port} 

  

Figure 6 Create services method in the API. 

The method will return the name of the service created and the following message codes: 

 CREATED: If the service was created successfully. 
 EXISTS: If the service was created previously. 

 ERROR: If the service cannot be created (by incorrect pod name, or any other incorrect input 
parameter). 
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 Delete Deployment 

With this resource previously created deployments can be deleted. Input parameters are:  

 Namespace: Namespaces give a scope for names. Resource names must be unique within 
a namespace, but not between namespaces. Namespaces cannot be nested within each other 
and each Kubernetes resource can only be found in one namespace. 

 Deployment: Name of the deployment you want to delete. 

 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 
{aws}.  

 HTTP request: /api/deleteDeployment/{namespace}/{deployment} 
 

 

Figure 7Delete deployment method in the API. 

The service returns an OK message if it has been successfully deleted, or in opposition, an ERROR 
message if it could not be deleted. 
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 Delete Pod 

Through this resource previously created Pods can be deleted. Input parameters:  

 Namespace: Namespaces give a scope for names. Resource names must be unique within 
a namespace, but not between namespaces. Namespaces cannot be nested within each other 
and each Kubernetes resource can only be found in one namespace. 

 Pod: Name of the pod you want to remove. 

 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 
{aws}.  

 HTTP request: /api/deletePod/{namespace}/{pod} 
 

 

Figure 8 Delete Pod method in the API. 

The service returns an OK message if the Pod has been successfully deleted, or conversely, an 
ERROR message if it could not be deleted. 
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 Describe Services 

With this resource we can describe the service created previously using the createServices method. 
Input parameters:  

 Namespace: Name of space where the services are hosted. 
 Service: Name of the service to be used. It usually consists of the svc prefix followed by the 

name of the pod (svc-podName). 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}.  

 HTTP request: /api/describeServices/{namespace}/{service} 
 

 

Figure 9 Describe services. 

This service returns the message OK if everything has gone well, or on the contrary, ERROR, if the 
service failed, as well as the name of the service and the URL which will be available to use. 
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 Expose Pod 

This resource combines createServices and describeServices documented above. The resource 
creates and describes a service. HTTP request is /api/exposePod/{namespace}/{pod}/{port} 

 

 

Figure 10 Expose Pod method, implemented in the API. 

The answer will be the same as in the describeService method. 

 

 Get Pod’s Log 

Through this resource the log of a pod in the indicated namespace can be retrieved. Input parameters:  

 Namespace: Name of space where the pods are hosted. 
 Pod: Name of the pod from which the log will be obtained. 

 Lines: Number of lines in the log (by default 100). Limits the number of lines obtained from 
the last line of the log to the first one. 

 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 
{aws}.  

 HTTP request: /api/getLogs/{namespace}/{pod} 
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Figure 11 Get Pod’s method implemented. 

The call returns a string with the log lines of the corresponding pod (Figure 12). 

 

Figure 12 Response of Get Pod’s method. 
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 Import Deployment’s YAML 

This resource implements the service declared in a YAML document provided as an argument. Input 
parameters are: 

 YAML: this YAML file is of Deployment type (kind: Deployment) 
 Namespace: Name of space where the deployment will be hosted. 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}. 
 HTTP request: /api/importYamlDeployments/{namespace} 

 

Figure 13 Import deployment method. 

The call returns a JSON with an OK message if the operation was successful and the pods with the 
IP where they were executed. 
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Figure 14 Response from Import deployment method. 

 Import Pod’s YAML  

From a YAML document, the resource creates the pod with the image indicated in the corresponding 
file. Input parameters: 

 YAML: this YAML declaration is of Pod type (kind: Pod) 
 Namespace: Name of space where the pods will be hosted. 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}. 
 HTTP request: /api/importYamlPods/{namespace} 
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Figure 15 Import Pod’s YAML method implemented in the API. 

The call returns a JSON with an OK message if the operation was successful and the IP where the 
pod was created. 

 

Figure 16 Response of Import Pod’s YAML method 
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 List Deployments 

This resource returns all the deployments created in the corresponding namespace. Input parameters 
are: 

 Namespace: Name of the space where the pods are hosted. 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}. 
 HTTP request: /api/listDeployments/{namespace} 

 

Figure 17List deployments method implemented in the API. 

The response will be the list of deployments (Figure 18) 
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Figure 18 Response of List of deployments method implemented. 

 List Pods 

This resource returns all pods created in the name space indicated. Input parameters are: 

 Namespace: Name of the space where the pods are hosted. 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}. 
 HTTP request: /api/listPods/{namespace} 

 

Figure 19 List PODs method implemented. 

The call returns a JSON with the corresponding POD list (Figure 20). 
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Figure 20 Response of List PODs method. 

 List PODs by Deployment 

This resource returns all pods associated with the corresponding deployment. Input parameters are: 

 Namespace: Name of the space where the pods are hosted. 
 Deployment: Name of the deployment from which you want to extract your pods. 
 Cluster: List of k8s clusters in which this method will be available. Options: {onpremise} or 

{aws}.  
 HTTP request: /api/listPodsByDeployment/{namespace}/{deployment} 
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Figure 21 List PODs by deployment method. 

The call returns a JSON with the corresponding POD list (Figure 22). 

 

Figure 22 Response of POD list method. 
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3 Container Images and Continuous Integration  

The first step in enabling the DeepHealth toolkit to leverage the Kubernetes platform was to create 
Docker container images for the DeepHealth components. Container images are the basic building 
blocks of Kubernetes software deployments. They are a snapshot of software with all its dependencies 
bundled with at least a partial runtime configuration. From a container image, a container can be 
executed, thus making the software operational.  

For the cloud adaptation of the DeepHealth toolkit, a full set of Docker container images for the toolkit 
libraries and other components have been designed and implemented; further, an automation pipeline 
has been put in place to automatically keep them up-to-date with new releases of the DeepHealth 
software components. In this section we will describe the achievements in this direction. 

3.1 Container Images 

In designing the structure of the DeepHealth container images, we sought to provide convenience for 
the user, by building feature-packed images that were ready-to-use for development or ad hoc 
applications, but also provide leaner images that were better suited to focused, production 
applications – where unnecessary complexity should be avoided. The resulting set of images and 
their interdependence is illustrated in Figure 23.  

 

Figure 23 Relation between the main DeepHealth Docker images. C++ API libraries are shown in blue, Python API in yellow. 
The green images are conveniently package the pair of EDDL and ECVL libraries to support full pipelines. 

Library-specific images are generated for each of the four toolkit libraries: EDDLL, ECVL, PyEDDLL 
and PyECVL. Further, full DeepHealth images are generated that package the entire C++ runtime 
(the libs image) and the entire Python runtime (the pylibs image). The latter two, which package 

the entire DeepHealth library functionality, are most easily used to integrate deep learning functionality 
into cloud-based applications. All these images contain all the DeepHealth runtime requirements, and 
are therefore ready to use to run DeepHealth-based applications that are grafted onto them. On the 
other hand, components not required for execution have been excluded to generate simpler and more 
compact images which have many advantages over larger images, including the following points: 

 Shorter start-up time. Starting containers from more complex images can require more time 
as more data must be read from disk. This factor is amplified tremendously if the images are 
not cached yet and must be downloaded from the repository. 
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 Reduced disk usage. Smaller images require less disk space. This factor impacts particularly 
image repositories, which archive the images, but also the possibility to locally cache images 
and avoid the time-cost of downloading them repeatedly. 

 Increased security. Removing components from the image reduces the attack surface where 
security problems can be introduced. 

 Reduced complexity. By reducing the number of components included in the image, we reduce 
the number of ways things go wrong, and the effort required for developers to detect and fix 
bugs and security issues. 

 Reduced build times. Smaller images are often quicker to build, which importantly affects the 
iteration time of the typical development cycle: code, build, test. 

In general, beyond taking care to avoid automatic installation of components that are not strictly 
required (e.g., avoiding the installation of recommended packages), the image compilation processes 
all use a multi-stage build approach, which allows us to keep some things available during the build 
process but not include them in the final image. 

NVIDIA CUDA Support. Given the nature and scale of the computations performed by the 
DeepHealth toolkit in practical applications, use of GPU hardware is a very high priority. The 
DeepHealth container images have been created to work seamlessly with the NVIDIA CUDA platform. 
The images are all built on the nvidia/cuda:10.1-runtime to include the CUDA runtime libraries and 
the configuration required to work with the NVIDIA Container Runtime for Docker. This component 
enables access to NVIDIA GPUs from within the software container with negligible overhead, thus 
enabling efficient GPU-accelerated computing in a containerized environment, such as Kubernetes. 

3.1.1 Toolkit Images 

The Docker images described thus far exclusively support the DeepHealth runtime requirements – 
i.e., the can be used to execute DeepHealth-based applications, but not to build or create them. We 
have created a set of toolkit Docker images for this purpose. In addition to the runtime library 
requirements, the toolkit images include the library compile time requirements (e.g., header files, 
compilers and other build tools, etc.) and are thus usable as a build environment for DeepHealth-
based applications. In fact, they are also used for some of the build stages of the runtime images. For 
every DeepHealth runtime image there is a corresponding toolkit image, and these toolkit images 
mirror the relations between the regular images as shown in Figure 24. 

As an example of the usage of a toolkit image, Figure 24 illustrates how a user can use the eddl-
toolkit image to compile and run a program that uses the EDDL library without installing any software 
on the host computer except for Docker. This type of usage takes advantage of the fact that local 
directories from the host computer can be mounted into the container’s file system, thus effectively 
being shared between the host and the container environments. In our example, the user could edit 
the program file normally, and switch to the containerized shell only to compile and execute it. 
Likewise, the toolkit images can also be used to work on the development of the DeepHealth libraries 
themselves.  

$ docker run -it -u $(id -u) -v $(pwd):/my_examples --rm \ 

  dhealth/eddl-toolkit:latest /bin/bash 

$ cd /my_examples/ 

$ g++ 6_mnist_auto_encoder.cpp -std=c++11 -leddl -pthread -o example 

$ ./example 

Figure 24 Full example showing how a toolkit image can be used to compile and run code residing on a host computer 
without locally installing any software other than Docker itself. 
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3.1.2 Image Versioning 

The various images produced by DeepHealth have one of two main priorities: closely tracking the 
development of individual DeepHealth libraries or providing a combination of library snapshots that 
have been tested to work well together. The images eddl, ecvl, pyeddl and pyecvl are in the first 

category and track the progress of the corresponding DeepHealth library. For these, a new version of 
the image is automatically generated for every push to the corresponding library-specific software 
repository on GitHub by the DeepHealth continuous integration pipeline (described later in this 
document). The other images fall in the second category. For them, a new image version is generated 
when the DeepHealth developers manually tag a new release of the DeepHealth docker-libs 

repository12, which contains the code implementing the Docker-related DeepHealth library 
functionality.   

Table 1 Various DeepHealth images and the libraries they track. The library-specific images are automatically generated 
with each commit in the corresponding library source code repository; the libs and pylibs images generated by an automated 
pipeline that is manually triggered when developers decide to create a new release. 

Runtime image Toolkit image Library tracked Dependencies 
included 

dhealth/eddl dhealth/eddl-toolkit EDDLL  
 

dhealth/ecvl dhealth/ecvl-toolkit ECVL EDDLL 

dhealth/pyeddl dhealth/pyeddl-toolkit PyEDDLL EDDLL 

dhealth/pyecvl dhealth/pyecvl-toolkit PyECVL PyEDDLL, EDDLL and 
ECVL 

dhealth/libs dhealth/libs-toolkit EDDLL+ECVL  
 

dhealth/pylibs dhealth/pylibs-toolkit PyECVL + PyEDDLL  EDDLL and ECVL 

 

3.2 Image Publication on DockerHub 

The Docker images produced by the DeepHealth project are published on DockerHub13. DockerHub 
is a Docker image hosting service, from which users and services can download images to execute 
containers or to extend them with additional functionality or customizations. A DeepHealth 
organization has been created14 and it is the central access point for the official images produced by 
the project. In addition to the library and toolkit images, the project also publishes Docker images for 
the other specialized DeepHealth components. 

                                                
12 https://github.com/deephealthproject/docker-libs  
13 https://hub.docker.com/ 
14 https://hub.docker.com/orgs/dhealth 

https://github.com/deephealthproject/docker-libs
https://hub.docker.com/
https://hub.docker.com/orgs/dhealth
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Figure 25 Screenshot of the DeepHealth organization on DockerHub with a partial list of its image repositories. 

3.3 Continuous Integration Pipeline 

In DeepHealth, continuous integration (CI) pipelines have been implemented to support the 
development process with continuous integration of new versions of DeepHealth software into the 
Docker images and the automated testing of those images. The full implementation is available in the 
deephealthproject/docker-libs repository on GitHub15, runs on the Jenkins installation hosted 

by UNIMORE16 and is installed next to the regular DeepHealth CI pipelines (on Jenkins, under the 
DeepHealth-Docker project folder instead of DeepHealth). As expected, the pipelines monitor the 

DeepHealth library repositories on GitHub. When a new change to the software is committed to a 
repository, the corresponding pipeline is activated and executes the following actions. 

1. New Docker image(s) of the modified components is automatically compiled; 
2. The tests for the component are automatically run. Unlike the CI pipelines for the bare 

software, which run the tests directly on a virtual machine, these CI pipelines run the tests 
within a Docker container – thus ensuring that the software works within a containerized 
environment. 

3. If the tests pass, the new image is tagged appropriately and published on DockerHub. If the 
tests do not pass, a problem is reported on the Jenkins dashboard. 

Various tags are applied to each published image to allow users to easily find and track the Dockerized 
version of the software they need. Specifically, the library images can be accessed by: 

● latest: latest successful build of the image; 

● <commit id>: latest image of the specific library git commit id; 

                                                
15 https://github.com/deephealthproject/docker-libs/ 
16 https://jenkins-master-deephealth-unix01.ing.unimore.it 

https://github.com/deephealthproject/docker-libs/
https://jenkins-master-deephealth-unix01.ing.unimore.it/
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● <commit id>_<build id>: image produced by the specific pipeline execution on the specific 

library git commit id. 

This thorough tagging scheme allows us to keep all images that are published, ensuring 
reproducibility, while providing some simpler tags for convenience. 

 

 

Figure 26 The DeepHealth Jenkins dashboard showing the status of several pipelines. 

As can be seen from the Jenkins dashboard, each DeepHealth Docker container image has its own 
specific CI pipeline. However, as much of the implementation as possible is shared among all of them. 
Specific parts adapt the different projects to the standard CI pipeline implementation. In particular, the 
various libraries have their specific requirements in terms of build systems (e.g., cmake, python 
setuptools), interfaces for the execution of tests, and provisioning of dependencies that must be 
handled by the pipeline. The core of the CI pipeline can also be downloaded and executed locally. 
This feature is particularly useful in the development of cloud-enabled DeepHealth components since 
new custom container images, perhaps including new DeepHealth code, can be built and tested 
locally. 

3.4 Availability 

All the code that implements the DeepHealth container images and the container CI pipelines 
described in this section has been released as open source and is available in the 
deephealthproject/docker-libs repository on GitHub. The DeepHealth Docker images are 

published in the publicly accessible image repositories under the “dhealth” organization on Docker 
Hub17. 

 

 

 

                                                

17 https://hub.docker.com/orgs/dhealth 

https://hub.docker.com/orgs/dhealth
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4 EDDLL Support for Cloud Environments 

4.1 Distributed EDDLL Operations on the Cloud 

This section describes the distribution of the computation of the EDDLL training operations in the 
DeepHealth cloud environment (see Sec. 2.3). The work distribution strategy has actually been 
implemented through the PyEDDLL Python bindings for the EDDL library, because these are more 
readily compatible with the COMPSs framework. We refer the interested reader to check deliverables 
D2.1 EDDLL library (May 2020) for a complete description of the parallelization strategy for the 
training operation, and D5.4 The runtime system for DeepHealth libraries (March 2020) for the 
modifications included in the COMPSs runtime to support the execution on in cloud environments.  

Concretely, this section briefly describes the parallel structure of the PyEDDLL training operation and 
its distribution on the on-premise cloud and provides a first evaluation from a performance and 
accuracy point of view. 

4.1.1 Parallelization Approach 

The parallelism exposed by the PyEDDLL training operation is shown in Figure 27 in the form of a 
task dependency graph (TDG). Each node of the TDG represents a COMPSs task that can be 
distributed among the different computing nodes – i.e., pods in the case of the DeepHealth cloud; the 
edges of the TDG represent the data transfers and synchronization between tasks, defining an 
execution order. 

In the flow illustrated in Figure 27 the neural network model is built in parallel on each distributed 

computing resource (build COMPSs tasks). As soon as the model is defined in a resource, a 

train_batch operation included in a task can start. Then, the parallelisation strategy follows a 

synchronous training approach: each train_batch COMPSs task operates in parallel over a subset 

of the dataset (divided into a given number of batches). When all tasks complete, the computed 

(partial) weights are collected in the master node (update_gradients task). This process is 

repeated for a given number of epochs (see deliverable D2.1 EDDLL library for further details). 

 

Figure 27 Task-level parallelism of the PyEDDLL training operations. 

4.1.2 Supporting Kubernetes Cloud Environments with COMPSs 

One of the main features of the COMPSs framework is that it abstracts the parallel execution model 
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail 
that would tie them to a particular platform, boosting portability among diverse infrastructures and so 
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enabling its execution in both a classical HPC environment and a cloud-based environment. COMPSs 
abstracts the underlining infrastructure by creating a set of execution environments, named COMPSs 
workers, in which COMPSs tasks execute. Internally, the COMPSs runtime implements different 
adapters to support the execution of COMPSs tasks in a given resource. Through a set of 
configuration files the user specifies the available sources of computing resources, which may reside 
in clusters or in cloud. Specifying a mixture of HPC and cloud resources naturally results in a hybrid 
cloud execution scenario, where the job is executed partly on HPC and partly on cloud resources. 

Within the context of the cloud adaptation work in DeepHealth, we have extended the COMPSs 
runtime with a new adapter to support the specific DeepHealth cloud API services described in 
Section 2.3.2 (see deliverable D5.4 The runtime system for DeepHealth libraries for further 
information). This adapter allows COMPSs to provision workers running on Kubernetes through the 
API; thanks to the nature of the API, depending on the user-provided configuration these workers can 
be dispatched trasparently on different clouds, creating a multi-cloud execution environment. 
However, this functionality has thus far only been tested with the on-premise DeepHealth cloud. 

Concretely then, to run EDDLL training on cloud resources the user configures the available 
provisioners of computing resources through .xml configuration files. As an example, Figure 28 
presents a first draft of the information to be included to deploy and execute the distributed version of 
the PyEDDLL training operation on the on-premise DeepHealth cloud infrastructure described in 
Section 2. 

 

Figure 28 Cloud information included in the COMPSs .xml configuration files. 

The information included in the .xml files is the following: 

 <CloudProvider>: Informs to COMPSs about the cloud provider used. If the “treelogic” 

cloud is selected, COMPSs will make use of the API services described in Section 2.3.2 to 
internally deploy the PyEDDLL operations parallelised with COMPSs. 

 <Endpoint>: Defines the connection details to the cloud infrastructure.  

 <Properties>: Defines the access details, including username and password. 

 <Image>: Defines the location of the docker image in which the parallelised version of the 

PyEDDLL with COMPSs is located. 

It is important to remark that the number of containers in which the image will be deployed (named 
pod replicas in Kubernetes) is not included in the .xml configuration files yet. Instead, the current 
implementation collects information from an environment variable. Future releases of the COMPSs 
runtime will include this information into the .xml files. 
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Figure 29 shows a possible distribution of the execution of the parallel version of the PyEDDLL training 
in the TREE DeepHealth cloud considering three COMPSs workers. This configuration has been 
defined with the parameters defined in Figure 28 and setting the number of replicas to 3. 

In this initial integration phase of the project, the user is responsible for “manually” deploying and 
launching the execution of the COMPSs Master (deployed in the Deephealth0 computing node in the 
figure) through the DeepHealth cloud API. The COMPSs runtime will then use also the DeepHealth 
cloud API to automatically deploy the rest of replicas (three in this case) in which the COMPSs workers 
will be executed. Once the deployment is completed, the parallel execution of the training operation 
is initiated, and so the COMPSs runtime starts the distribution the different COMPSs tasks (i.e., the 

build and train_batch tasks shown in Figure 27, guaranteeing the data dependencies among 

tasks. In this case, the update_gradients function is executed in the COMPSs master to aggregate 
the partial computed weights at the end of each epoch. 

 

Figure 29 Distributed PyEDDLL training on the DeepHealth cloud. 

4.1.3 Preliminary Evaluation 

We have conducted a preliminary set of experiments in the DeepHealth cloud to evaluate the 
performance speedup of the distributed training operation when the trained accuracy is above 90%. 
Concretely, the experimental setup is the following: 

 The MNIST training dataset18; 
 A DNN topology (784 x 1024 x 1024 x 1024 x 10, linear rectified activation function for the 

hidden layers and softmax for the output layer); 
 Kubernetes cluster on-premise featuring 3 nodes with the following characteristics: 

o deephealth0 ---- 16Gb, 4vCPU(2x2) Intel(R) Xeon(R) CPU L5640 @ 3,00GHz 
o deephealth1 ---- 8Gb, 4vCPU(2x2) Intel(R) Xeon(R) CPU X5570 @ 2,93GHz 
o deephealth2 ---- 8Gb, 4vCPU(2x2) Intel(R) Xeon(R) CPU X5570 @ 2,93GHz; 

 Number of COMPSs Workers = number of batches = 1 (sequential), 2, 3. 4, 8, 16. 

Figure 30 Preliminary evaluation of the distributed PyEDDLL training in the cloud. Note that the 
COMPSs worker processes are distributed over the set of 3 computing nodes. This entails that from 
N > 4 workers the COMPSs processes compete for resources on the same nodes, explaining the 
degrading performance at N = 16. shows the execution time and performance speedup of the 
distributed PyEDDLL training operation when varying the number of COMPSs workers (and so 
number of pod replicas deployed) from 1 to 16. As expected, the maximum performance is achieved 

                                                

18 http://yann.lecun.com/exdb/mnist/ 

http://yann.lecun.com/exdb/mnist/
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when the number of replicas equals to the number of available computing nodes, i.e., 3. From this 
point on, the performance is degraded due to the execution interfaces when executing more than one 
COMPSs worker in the same node, thus adding scheduling and coordination overhead without adding 
computing resources. 

The accuracy achieved in all experiments is 94.01%, independently of the distribution strategy. 

 

Figure 30 Preliminary evaluation of the distributed PyEDDLL training in the cloud. Note that the COMPSs worker 
processes are distributed over the set of 3 computing nodes. This entails that from N > 4 workers the COMPSs processes 

compete for resources on the same nodes, explaining the degrading performance at N = 16. 

4.2 Deployment of Front.End for Training models on the Cloud 

The DeepHealth toolkit includes a high-level web service and a graphical web-based user interface to 
enable high-level access to the functionality offered by the DeepHealth libraries – described in D2.5 
EDDLL Toolkit front-end and D3.5 ECVL Toolkit front-end. Together, these components are the 
DeepHealth front-end, which allows expert users to train new models or use existing models to 
perform inference without writing any programming code. As explained in those previous reports, 
given the tight interoperation between the EDDLL and ECVL the implemented solution has unified the 
EDDLL and ECVL front-ends into a single software package. As a result, the cloud adaptation of the 
front-ends for EDDLL and ECVL has also been unified. The resulting work is described in detail in 
D3.6 ECVL adaptation to cloud environments. 

5 Deployment-as-a-Service on the ODH Platform 

As discussed in the Introduction (Section 2), Kubernetes is currently the reference platform for 
deploying, scaling and managing containerized applications, and Docker containers are an effective 
solution adopted to provide users with access to the images of the DeepHealth toolkit libraries (see 
Section 3.1). In this section, we present the StreamFlow framework, which has been developed for 
managing the deployment and the execution of tasks in multi-container environments, using different 
underlying technologies, such as Kubernetes, and supporting concurrent execution of communicating 
tasks. This framework also exploits the portability properties of software containers to simplify the 
execution of distributed applications based on DeepHealth libraries on different and possibly hybrid 
infrastructures. We also describe how StreamFlow works on the OpenDeepHealth (ODH) platform, 
thus demonstrating how the cloud adaptation activities have enabled the use of the DeepHealth toolkit 
not just on general-purpose clouds but also on more customized configurations. 

5.1 ODH Platform 

The OpenDeepHealth platform, designed to implement the DeepHealth project requirements, has 
been developed as part of the University of Turin’s HPC4AI19 infrastructure, which is a federated 
OpenStack20 cloud with multi-tenant private Kubernetes instances. The ODH platform (see Figure 31) 

                                                
19 Marco Aldinucci et al. HPC4AI, an AI-on-demand federated platform endeavour. ACM Computing Frontiers 
2018, Ischia, Italy, 8-10 May 2018. doi: 10.1145/3203217.3205340 
20 O. Sefraoui et all, "OpenStack: toward an open-source solution for cloud computing", Int. Journal of Computer 
Applications, vol 55, num3, 2012 
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is defined as an HPC secure tenant where a multi-tenant Kubernetes cluster is deployed and the 
DeepHealth toolkit libraries are available as Docker containers, both for CPU and GPU nodes. 
Technical details about the overall HPC4AI infrastructure and the ODH configuration can be found in 
deliverables D4.1 Integration of DeepHealth platforms and use cases and D5.1 Efficient HPC 
Infrastructure for DeepHealth libraries.  

Figure 31 OpenDeepHealth platform. 

5.2 The StreamFlow Framework 

In addition to the Kubernetes cluster, at a higher level of abstraction, UNITO is developing 

StreamFlow21, a novel approach to workflow execution that supports sophisticated execution plans. 

In fact, StreamFlow allows the declarative description of possibly many execution environments to be 
used simultaneously for the execution of workflow nodes; properties associated to the workflows 
nodes are used to decide in which execution environment to schedule it. Thus, StreamFlow supports 
the deployment of an application on top of a "virtual" cross-site platform, making it possible to partition 
the application workflow and describe an execution plan spawning across multiple sites, even if they 
do not share the same data space. It also naturally handles workflows with nodes that have specific 
requirements, perhaps only available as a subset of the sites (e.g., particularly relevant to DeepHealth 
would be GPU nodes). It is worth noting that the ability to model an application as a workflow provides 
an interface between the domain specialists, specifying their own application requirements, and the 
computing infrastructure. The StreamFlow workflow manager implements an orchestration layer that 
allows users to easily manage workflow modelling, enhancing application reproducibility and 
portability, and to support deployment and execution in different environments, enhancing 

Kubernetes’ ability to handle different computational steps. 

The idea behind this approach is that the ability to deal with hybrid workflows – i.e., consisting of tasks 
running in different execution environments – can be a crucial aspect for performance optimization 
when working with massive amounts of input data and varying requirements in computational steps. 
Accelerators like GPUs, and in turn, different infrastructures like HPC and clouds, can be more 

                                                

21 StreamFlow: cross-breeding cloud with HPC Published in ArXiv 2020 https://arxiv.org/abs/2002.01558 
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efficiently used by selecting for each application the execution plan that better fits the specific needs 
of the computational steps. This final aspect is particularly relevant for the computationally and data-
intensive applications developed in the DeepHealth project. 

The StreamFlow framework is a container-native Workflow Management System (WMS) written in 
Python 3. It has been designed around two main principles: 

 Allow the execution of tasks in multi-container environments in order to support concurrent 
execution of multiple communicating tasks in a multi-agent ecosystem; 

 Relax the requirement of a single shared data space, in order to allow for workflow executions 
on top of multi-cloud or hybrid cloud/HPC infrastructures. 

The basic idea behind the StreamFlow model is to provide the ability to express correspondences 
between the application workflow description, specifying application steps with the related data 
dependency, and an environment model description defining target infrastructures capability. This 
information allows StreamFlow to effectively orchestrate the deployment and execution of the 
application on the target infrastructure. 

 

Figure 32 StreamFlow framework’s logical stack. Colored portions refer to existing technologies, while white ones are 
directly part of StreamFlow. In particular, the orange area is related to the definition of the workflow's dependency graph, 

while the green area refers to the execution environments.  

One of the design choices for the StreamFlow approach is to rely on existing coordination languages, 
instead of coming with yet another way to describe workflow models. Therefore, we decided to 
integrate with the CWL format because, being CWL a fully declarative language, it is far simpler to 
understand than its Make-like or dataflow-oriented alternatives. Nevertheless, since we plan to 
support other coordination languages in the future, a more agnostic mid-layer representation of a 

workflow graph is definitely in the next implementation steps list.  

In Figure 32 the StreamFlow logical stack is depicted. In StreamFlow’s glossary, a complex multi-
container environment is called model. Each model is managed independently of the others by a 
dedicated connector implementation, which acts as a proxy for the underlying orchestration library 
(for instance, the Helm connector enables interaction with Kubernetes platforms). A single model can 
include multiple types of containers, called services. For example, a Docker Compose file describing 
a database and a Tomcat containers linked together constitute a model with two services. 
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In the StreamFlow architecture, the Deployment Manager has the role of creating models when 
needed and destroying them as soon as they are no longer required. It relies on the underlying 
orchestration library by means of pluggable implementation of the Connector interface. So far three 
different Connector implementations are included with StreamFlow: Docker Compose, Helm and 
OCCAM (Open Computing Cluster for Advanced data Manipulation)22 – the HPC component of the 
UNITO platform. The Scheduler is in charge of selecting the best resource on which each task should 

be executed, while guaranteeing that all requirements are satisfied. Finally, the Data Manager, which 
knows where each task's input and output data reside, must ensure that each service has access to 
all the data dependencies required to complete the assigned task, performing data transfers only 
when necessary. At this point, a job, (i.e., the run-time representation of a task) can be successfully 
executed on the selected resource. 

5.3 Using StreamFlow with the DeepHealth Toolkit 

When launching StreamFlow execution, the only argument it accepts is the path of a YAML file, 
conventionally called streamflow.yml. This file serves to define the workflows to be executed, 

specify various parameters and, crucially, to link each task of the workflows with the service that 
should execute it. In order to make this binding unambiguous, each service in a model and each task 
in a workflow should be uniquely identifiable. The streamflow.yml file of the pipeline that will be 

presented in the next section is provided in Figure 33.  

The workflows section consists of a dictionary with uniquely named workflows to be executed in the 

current run. Each workflow specification contains three fields: 

 type that identifies which language has been used to describe the workflow dependency 
graph (at the moment cwl is the only accepted value), 

 config that includes the paths to the files containing the graph description, 
 a bindings list that contains the task-model associations. 

Different workflows are totally independent of each other and this means that, even if two tasks in two 
different workflows can refer to the same model specification, two different environments will be 
actually deployed for their execution. Considering workflows as dependency graphs, each node can 
refer to either a simple task or a nested sub-workflow. Therefore, we decided to adopt a file-system 
based mapping of each task to a POSIX-like path, where each simple task is mapped to a file and 
each sub-workflow is mapped to a folder, which can contain both files and sub-folders. 

The models section contains a dictionary of uniquely named model specifications, each of which is 

an object with two distinct fields: 

 type that identifies which Connector implementation should be used for its creation, 
destruction and management; 

 config which contains a dictionary with configuration parameters for the corresponding 
Connector. Usually, the config parameters are directly extracted from the tools commonly used 
to interact with the underlying orchestration library (e.g. helm CLI for Helm charts), so that a 
user who is familiar with these libraries can easily understand the StreamFlow format. 

Finally, the format adopted for the bindings list takes into account all considerations on unambiguous 
identification of tasks and services. In particular, each element of this list contains: 

 a target object, with a model and a service attributes that uniquely identify a service (in the 

example in Figure 33 the service is pylibs, a Python DeepHealth library container) 

 a step attribute containing a path in the file-system abstraction of a workflow graph. If the 

path resolves to a folder (i.e., to a nested sub-workflow), the same target service is applied 

                                                

22 M. Aldinucci, et al., “The Open Computing Cluster for Advanced data Manipulation (OCCAM),” in Journal of 

Physics: Conf. Series 898 (CHEP 2016), San Francisco, USA, 2017. 
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recursively in the file-system hierarchy, unless a more specific configuration (i.e., another entry 
in the bindings list with a deeper path in its step overrides it. 

The best way to unambiguously identify a service in a model strictly depends on the model 
specification itself. In Kubernetes (and consequently in Helm) the unit of deployment is a Pod, which 
can contain multiple containers inside it. In this case, the user is required to explicitly add the name 
attribute for each container in the Pod template and to ensure the uniqueness of such name in the 
context of the whole Helm release. 

A list of Docker containers supporting ML application development and execution is deployed in ODH 
platform (see Figure 34), including DeepHealth toolkit and libraries. These containers can be referred 
to as services in the StreamFlow models to deploy and execute any application that is integrated 
with them. Therefore, any application or tasks that is integrated in DeepHealth library containers can 
be easily deployed and executed on the ODH platform. As further step, we are investigating the 
possibility of integrating DeepHealth backend and frontend (see Section 4.2 and D3.6) in ODH and 
StreamFlow framework to provide complete access to the DeepHealth toolkit. 

 

 

Figure 34 ML containers in ODH 

 

 

Figure 33 streamflow.yml (example) 
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Besides being currently installed in ODH, StreamFlow it is also available on GitHub23 and PyPI24. It 
can be executed directly from the command line with the following command: 

streamflow /path/to/streamflow.yml 

Docker images are also available on Docker Hub25. In order to run a workflow using an image the 

following steps are required. 

 A StreamFlow project, containing a streamflow.yml file and all the other relevant 
dependencies (e.g., a CWL description of the workflow steps and a Helm description of the 
execution environment) needs to be mounted as a volume inside the container, for example 
in the /streamflow/project folder. 

 Workflow outputs, if any, will be stored in the /streamflow/results folder. Therefore, it is 
necessary to mount the output path as a volume to persist the results. 

 StreamFlow will save all its temporary files inside the /tmp/streamflow location. For debugging 
purposes, or in order to improve I/O performances in case of huge files, it could be useful to 
also mount this location as a volume. 

 The path of the streamflow.yml file inside the container (e.g. 
/streamflow/project/streamflow.yml) must be passed as an argument to the Docker 

container. 

A full example of a StreamFlow execution in a Docker container showing all these mounts is provided 
in Figure 35. 

It is also possible to execute the StreamFlow container as a job in Kubernetes. In this case, 
StreamFlow is able to deploy Helm models directly on the parent cluster using ServiceAccount 
credentials. In order to do that, the inCluster option must be set to true for each involved model in 
the streamflow.yml file. 

5.4 An EDDLL/ECVL Pipeline Example in StreamFlow 

To demonstrate how the StreamFlow framework can be used to manage applications using the 
DeepHealth libraries in the ODH cloud-based platform, we present how to describe and run an 

example pipeline in the framework. The example selected is a use case pipeline26 taken from project 
test cases. Here we are not focusing on the details of the specific ML algorithm implemented and the 
network used, but just on the integration mechanisms binding the DeepHealth libraries with the ODH 
platform and, most of all, how these bindings are defined and managed in the StreamFlow framework.  

The use case pipeline we selected uses the EDDLL and the ECVL to train a CNN on three different 
datasets (MNIST, ISIC and PNEUMOTHORAX), applying different image augmentations, for both the 

                                                
23 https://github.com/alpha-unito/streamflow 
24 https://pypi.org/project/streamflow/ 
25 https://hub.docker.com/r/alphaunito/streamflow 
26 https://github.com/deephealthproject/use_case_pipeline 

Figure 35 Streamflow docker execution (example). 

https://github.com/alpha-unito/streamflow
https://pypi.org/project/streamflow/
https://hub.docker.com/r/alphaunito/streamflow
https://github.com/deephealthproject/use_case_pipeline
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classification and the segmentation task. For our test case, which we call odh-demonstrator, we 
decided to perform a computation on the ISIC dataset, composed of two tasks: 

 A SKIN_LESION_CLASSIFICATION_TRAINING task, that trains the neural network loading 
the dataset in batches (needed when the dataset is too large to fit in memory); 

 A SKIN_LESION_CLASSIFICATION_INFERENCE task, that perform inference on 
classification task loading weights from the previous training process. 

 

Figure 36 Odh-demonstrator workflow. 

5.4.1 The Workflow 

As described in the previous paragraph, StreamFlow needs the description of both the application 
workflow and the target infrastructure, the model. The application workflow is described using the cwl 
language in the the main.cwl file (Figure 37). Inputs of the overall workflow are the number of epochs 
for the training process and the image dataset.  

Looking at the main.cwl, workflow steps are: 

 training that takes as input the number of epochs and the image dataset and produces a 
model.  

 inference that takes as input the image dataset and the model produced in the previous 
training step. 

Details for each step are, in turn described using cwl files, respectively training.cwl and 
inference.cwl (Figure 38). Looking at these files we can notice that the image dataset is specified 
not only in inputs but also as arguments for both tasks and it is specified referring to a description 
file (isic_classification.yml). The model, is instead defined as an outputBinding for the 
training task and as an inputBinding for the inference one. This way, the data dependencies 
between the two steps of the workflow and the external inputs are clearly defined.  

Also, for both tasks the baseCommand (in this case a Python command) that has to be invoked to 
activate the task in the target container is defined, also providing additional configurations (in this 
case the option for selecting task execution on GPU). 
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Figure 37 Main.cwl (odh-demonstrator). 

Figure 38 Training.cwl and Inference.cwl (odh-demonstrator). 
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To complete the workflow specification, the settings field is also defined referring to a config.yml 
file where the values of the input parameters are set (Figure 39). 

5.4.2 The Model and Bindings 

As already explained, the target model describes the multi-container environment where the workflow 
will be executed. In the case of the ODH platform the target is a Kubernetes environment, so 

StreamFlow will use a Helm Connector (type: helm). As a first step we define a helm-odh-
demonstrator model, including a pylibs container with DeepHealth’s Python libraries as service. 
In this case, the inCluster flag is set to true because we are running StreamFlow in Kubernetes too. 
Finally, in the bindings list the helm-odh-demonstrator is associated to both workflow steps, so that 
the same pylibs container will be used for the entire workflow.  

The execution environment of the pipeline use case is depicted in Figure 40 where the blue layer 
represents the odh-demonstrator Kubernetes cluster. The StreamFlow manager is running in a Pod 
on a CPU node and orchestrates the execution of the two sequential pipeline tasks, deployed in turns 
in the pylibs containers and running on GPU nodes. 

 

Figure 40 Odh-demonstrator execution environment. 

It is worth noting that the same pipeline could be easily deployed also in a different target 
infrastructure, only providing the correct model description.  

Also, it should be considered that this is just a simple demonstrator and further activity is ongoing to 
enhance integration between the DeepHealth toolkit and the ODH platform:  

Figure 39: config.yml (odh-demonstrator) 
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 At infrastructure level, mechanisms to guarantee persistent volume management inside the 
Kubernetes cluster are being investigated; 

 Authentication/authorization mechanisms for executing application workflows on hybrid 
infrastructures with seamless access are considered; 

 Support tools for enabling users to define StreamFlow description files should be defined, 
likely based on templates definition; 

 StreamFlow integration with DeepHealth backend and frontend should be evaluated; 
 Integration in ODH of the new releases of DeepHealth libraries, also comprising distributed 

and parallelization mechanisms is foreseen. 

6 Overheads and Drawbacks of Deep Learning on the Cloud  

In this section we will quantify the overhead introduced by the containerization of the DeepHealth 
libraries in realistic usage scenarios. Since the implementation of all the use cases is not yet complete, 
we will rely on the Use Case Pipeline repository27 and the network architecture developed for UC13 
(epileptic seizure detection) as test benches.  

The tests were focused on the CPU version of the library, but UC13 was also evaluated on GPU. The 
system used for the benchmarks was a computing server with 2 Dual Intel Xeon Gold 6154 CPUs (36 
cores, 72 threads), with a maximum processor speed of 3.70 GHz and 384 GB of RAM memory, while 
the GPU is a Nvidia Tesla T4 with 16 GB of memory. The installed operating system is CentOS v7.7.  

6.1 Test Case 1: MNIST Pipeline 

The first test case to evaluate the overhead of the container images of the libraries was taken from 
the Use Case Pipeline repository28, which can be considered the reference example for the practical 
integration of the EDDLL and the ECVL. This repository provides several use cases, one of which is 
based on the popular MNIST dataset29. In this test case we used two network architectures: a classical 
LeNet structure30 implemented in the EDDLL library (v0.4.4), and an autoencoder architecture 
implemented in the PyEDDLL library (v0.7.0). 

Table 2 Overhead introduced by the Docker Images in training a model with the MNIST dataset shows 
the required training time per epoch using different numbers of CPU cores, for both containerized and 
regular execution scenarios. In this case, the dockerized version of the application does not 
experience any overhead, and indeed the running times are sometimes slightly shorter – which can 
likely be attributed to variability in the experimental apparatus. These measurements corroborate with 
the expected low overhead of containerizing these workloads. 

Table 2 Overhead introduced by the Docker Images in training a model with the MNIST dataset 

Library Dockerized Number of 
CPU Cores  

Time per 
epoch (s) 

Overhead Nº 
Measurements 

EDDLL + ECVL No 36 396 ± 6.67 Reference 100 

EDDLL + ECVL Yes 36 379 ± 4.84 -4.3% 100 

PyEDDLL No 4 29.61 ± 5.38 Reference 100 

PyEDDLL Yes 4 32.36 ± 7.99 9.3% 100 

                                                
27 https://github.com/deephealthproject/use_case_pipeline 
28 https://github.com/deephealthproject/use_case_pipeline  
29 https://en.wikipedia.org/wiki/MNIST_database 
30 https://en.wikipedia.org/wiki/LeNet 

https://github.com/deephealthproject/use_case_pipeline
https://github.com/deephealthproject/use_case_pipeline
https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/LeNet
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PyEDDLL No 1 7.47 ± 0.02 Reference 100 

PyEDDLL Yes 1 7.45 ± 0.02 -0.3% 100 

These numbers are certainly surprising, and have revealed an issue in the current multi-core 
implementation of the EDDLL. Specifically, the configuration parameter that sets the number of CPU 
cores to use is not well behaved and it causes unexpected performance drops. This issue has been 
acknowledged and will be addressed in the near future. Nevertheless, the problem does not affect 
the evaluation of the containerization overhead, which is the target parameter of these experiments. 

6.2 Test case 2: Epileptic Seizure Detection Network 

A second set of tests was performed training the neural network designed for UC13 (Epileptic seizure 
detection on EEG signals) using the public CHB-MIT database31 as dataset. The network architecture, 
shown in Figure 41, is relatively simple: it consists of 5 convolutional layers followed by 2 dense layers. 
The input is just the raw multi-lead EEG signal, so no preprocessing is required and therefore only 
the EDDLL library is evaluated. Specifically, the implementation was done using the PyEDDLL 
interface. For the sake of comparison, we also include the performance measurements obtained from 
the evaluation of the same network architecture implemented using the Keras library. The results for 
the training task with the whole dataset are shown in Table 3. 

In this specific use case, results show a comparable and significant overhead in the containerized 
version using 1 CPU core, for both Keras and PyEDDLL. However, while for Keras the overhead is 
reduced proportionally to the number of cores used, for PyEDDLL the overhead increases in multi-
core settings – which is in direct contrast to the low overhead on a very high numer of cores observed 
in Test Case 1. Both the observed overhead and the multi-core effects are unexpected and need to 
be clarified with further experimentation. The causes might be rooted in some particular aspect of this 
neural network architecture or perhaps even some particular (perhaps transient) conditions at test 
execution time. These experiments will be extended to the different use cases as they integrate the 
DeepHealth toolkit, allowing us to better characterize the efficiency of the containerized DeepHealth 
libraries and address efficiency problems that might be identified. Regarding the GPU implementation, 
observed containerization overhead is practically inexistent for PyEDDLL (0.2%) and relatively low for 
Keras (8.7%). 

Compared with the Keras library, for UC13 the PyEDDLL is consistently between 20 and 30 times 
slower on CPU, except on the multi-core dockerized version, in which the running time is around 60 
times slower. This difference is likely linked to some issue that is specific to this network and the 
maturity of the Keras implementation with respect to the EDDLL library, and we expect the gap to 
narrow as work progresses in DeepHealth. On the other hand, on GPU the difference in execution 
time are reduced to 8 times slower 

                                                

31 https://physionet.org/content/chbmit/1.0.0/ 

https://physionet.org/content/chbmit/1.0.0/
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Figure 41 Network architecture for Epileptic Seizure Detection. 

Table 3 Overhead introduced by the Docker images in the training of UC13. 

Library Dockerized CPU/GPU Time per epoch (s) Overhead Nº Measures 

PyEDDLL No CPU 1 core 452 ± 7,09 Reference 150 

PyEDDLL Yes CPU 1 core 853 ± 8,20 88,8% 50 

PyEDDLL No CPU 4 cores 246 ± 4,66 Reference 150 

PyEDDLL Yes CPU 4 cores 667 ± 7,50 170,7% 50 

PyEDDLL No GPU 5,569 ± 0,02 Reference 750 

PyEDDLL Yes GPU 5,580 ± 0,02 0,2% 750 

Keras No CPU 1 core 17,09 ± 0,37 Reference 750 

Keras Yes CPU 1 core 29,27 ± 0,75 71,3% 750 

Keras No CPU 4 cores 11,05 ± 0,35 Reference 750 

Keras Yes CPU 4 cores 13,03 ± 0,59 17,9% 750 

Keras No GPU 0,724 ± 0,31 Reference 750 

Keras Yes GPU 0,787 ± 0,23 8,7% 750 
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7 Conclusions 

This deliverable reports the activities performed in Task 2.4, which had the objective to facilitate and 
demonstrate the use of the DeepHealth EDDLL library on cloud computing infrastructure. The 
activities gone beyond this objective to allow users to use both DeepHealth libraries together on the 
cloud for the creation of complete cloud-enabled deep learning pipelines. 

A full spectrum of solutions has been delivered to run the DeepHealth toolkit on the Kubernetes 
platform. At the lower level, Docker container images have been provided. These form the basis for 
the results presented in this report, but also for the integration of DeepHealth components in the 
cloud-enabled DeepHealth platforms – in addition, of course, to external adopters. At a higher level, 
the DeepHealth front end has been ported to the cloud and the DeepHealth libraries have been 
integrated into the ODH platform and the StreamFlow workflow manager, offering ready-to-use cloud-
enabled solutions for expert users. From a scalability perspective, the EDDLL has been extended to 
be able to efficiently exploit large-scale multi-cloud and hybrid cloud infrastructures, and this 
opportunity has been made available to consortium partners through the deployment of on-premise 
private cloud. Finally, continuous integration pipelines have been put in place to ensure that as the 
development of the DeepHealth libraries continues, those improvements will be automatically 
integrated into new container images so that the solutions described in this document remain up-to-
date and sustainable in time. 


