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1 Introduction 

The European Distributed Deep Learning Library (EDDLL) is an optimized library for distributed 
deep learning. It allows the definition of different neural network architectures and its executions on 
different hardware platforms and accelerators. Moreover, the library aims to offer tailored 
implementations that can be efficiently executed on general CPUs, Graphical Processing Units 
(GPUs), Field Programmable Gate Arrays (FPGA). The different implementations are managed by 
COMPSs, which transparently distributes the work across the available accelerators. 

The goal of WP2 is to develop and deploy EDDLL using the different use cases of the DeepHealth 
project. The design and implementation of EDDLL aims to replicate the state-of-the-art in terms of 
Deep Learning functionality in a way that they will also be ready to run on hybrid and heterogeneous 
High Performance Computing (HPC) + Big Data clusters. 

All the activities described in this delivery are mainly related to task T2.3 “EDDLL adaptation to 
heterogeneous HPC hardware”. For this task effort, the goal is to optimize and adapt key algorithms 
and methods deployed in EDDLL to HPC heterogeneous components; mainly high-end CPUs, 
GPUs, and FPGAs. This task also tackles the deployment of those algorithms and the adaptation to 
the foreseen runtime environment of the HPC system. 

The work efforts of this task started at different project months and, because of that, some 
developments have been active longer and have made further progress. It is important to highlight 
that this deliverable has not been substantially impacted by the world-wide crisis related to the 
COVID19 pandemia. However, many development and testing activities have suffered considerable 
disruptions due to the strict restriction to access the workplace and reach the required facilities to 
perform the tasks associated with this deliverable. 

In this deliverable we present the results of the characterization, optimization, and adaptation of 
EDDLL for HPC infrastructures. The deliverable is divided into six main sections. First, Section 2 
presents the results of the performance profiling and characterization of the EDDLL algorithms. 
Then, Section 3, 4 and 5 present the algorithm adaptations and optimizations for CPUs, GPUs and 
FPGAs, respectively. Section 6 describes the design of the FPGA dataflow accelerator for efficient 
inference, and Section 7 contributes with the results of the parallelization of the pyEDDLL training 
operation on HPC infrastructures. Finally, Section 8 concludes this deliverable. 
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2 Profiling and performance characterization 

The EDDLL is an optimized tensor library for distributed deep learning. It allows the definition of 
different neural network architectures and its executions on different hardware platforms and 
accelerators (a.k.a. computing services). The library is built around the concept of Tensor, which 
offers a wide range of functionalities and connects to other components of the library. The Tensor 
interface is device independent, thus enabling a strong decoupling between the network training 
logic and the hardware implementation. This way, the EDDLL offers tailored implementations that 
can be efficiently executed on general CPUs, Graphical Processing Units (GPUs), Field 
Programmable Gate Arrays (FPGA), or distributed using COMPSs. 

It is broadly known that executing deep neural networks (DNN) requires a significant amount of 
memory and computation. In recent years, deep learning has become ubiquitous and many tools 
employ DNNs to solve a wide variety of problems. Hence, modern processors offer specific features 
to accelerate these types of workloads. Moreover, high performance hardware platforms allow high 
degrees of parallel execution in order to further accelerate the execution of DNNs. Nevertheless, full 
exploitation of the available hardware resources requires careful evaluation and adaptation fo the 
DNNs. Depending on the specific target, different bottlenecks can arise and limit the potential of the 
targeted accelerator. 

In this section, we present the performance evaluation of the EDDLL on the high performance 
computing (HPC) infrastructure. The goal of this characterization is to identify the most time-
consuming parts of the algorithms and to analyze their potential for being accelerated with parallel 
CPUs, GPUs and FPGAs. First, we present the experimental setup based on DeepHealth’s use 
cases and a comprehensive performance characterization of the library. After that, we indicate the 
main performance bottlenecks and the underlying causes. Then, we propose solutions to overcome 
these inefficiencies and adapt EDDLL to be executed on HPC hardware in a way that fully exploit its 
capabilities. Furthermore, we present experimental results of the optimized version together with 
some recommendations for further performance improvement. We conclude by compiling the most 
relevant results found during the experimentation, analysis, and optimization. 

2.1 Experimental setup 

As described in Deliverable D1.2, the Barcelona Supercomputing Center (BSC) provides a set of 
HPC resources to study how the most relevant performance limitations of biomedical applications 
can be effectively overcome on modern HPC infrastructures. BSC hosts several HPC machines, 
being Marenostrum 4 the most relevant one. Marenostrum 4 consists of 48 racks with 3456 nodes 
of two Intel Xeon Platinum chips (Skylake), each with 24 cores running at 2.1 GHz. The whole 
cluster sums up a total of 165,888 processors and 390 Terabytes of main memory and is capable of 
reaching peak performance of 11.15 PetaFLOP/s. The nodes are interconnected by a low-latency 
Omnipath network with a fully connected fat-tree topology.  

Additionally, Marenostrum 4 is equipped with a cluster featuring emerging technologies that 
combines IBM POWER9 CPUs and NVIDIA Volta GPUs (V100). This cluster is composed of 54 
nodes, where each node is equipped with 2 POWER9 processors, 4 Volta GPUs and 6.4TB of 
NVMe. The nodes are like the ones in the Sierra supercomputer at Lawrence Livermore National 
Laboratories, which is the 3rd fastest supercomputer in the top500 list. This cluster is very suitable 
both for HPC and for machine learning workloads, as it reaches a peak performance of 1.57 
PetaFLOP/s in double precision computations. 

Several profiling tools have been used for the experimental evaluation and characterization of the 
EDDLL. Foremost, we have utilized the performance counters for Linux (PCL or perf) to access the 
hardware Performance Monitoring Counters (PMC), monitor specific kernel-based subsystem 
events, and collect high-level performance metrics like cycles and instructions executed per 
function. Also, the profiling tool Intel® VTune™ Amplifier has been used on the Xeon platform to 
support further characterization experiments. In this evaluation, the VTune profiler has facilitated 
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tracking multithreading synchronization and scalability problems, capturing specific PMCs of the 
Intel Xeon processor that is being used, and also understanding interactions between the critical 
computing kernels within the library. Additionally, in order to model the memory usage and detect 
any issues and limitations related to the allocation/deallocation patterns, we have performed several 
analyses using the Valgrind memory profiling tool. 

Throughout the experimentation we have benchmarked the existing use cases provided by the 
DeepHealth developers. Notwithstanding that the EDDLL and the use cases are still under 
development, we have focused our analysis on the available prototypes to characterize the main 
core functions of the library. In particular, we have evaluated the UC12 (Skin cancer melanoma 
detection) for both applications, skin lesion classification and skin lesion segmentation. In this case, 
we have selected a representative subset of the ISIC 2019 challenge database composed by 
randomly selecting 200 images for training (2 epochs) and 200 for testing inference. All the results 
have been obtained executing EDDLL v0.5.4-alpha for the DeepHealth use case pipeline v8491a67. 
The support libraries used for the experimentation are ECVL v0.2.1, Eigen v3.3.90, GTest v1.10.0, 
OpenCV v4.1.1, and Protobuf v3.5.1. 

2.2 Experimental results and performance characterization 

The primary goal of this task effort is to characterize the performance of the EDDLL. Therefore, this 
task focuses on modeling the performance, hardware exploitation, and scalability of the EDDLL on 
the selected HPC platforms. Following a top-down approach, we first evaluate the overall execution 
performance and memory consumption running on the MN4 HPC hardware platform (i.e., the Intel 
Xeon processor) for different batch sizes and working threads. This way, we narrow down the 
analysis to detect critical functions in the library and identify specific performance bottlenecks. We 
analyze the interrelation between the compute kernels (i.e., computationally intensive functions) 
identifying the critical call-path between them. Then, gathering the information retrieved from the 
profiled executions, we identify the most important performance bottlenecks and the cause of these 
inefficiencies. This analysis establishes the foundations for a CPU-optimized version, adapted to the 
HPC hardware infrastructure, which can overcome these performance penalties and improve the 
running time of the EDDLL. 

2.2.1 Execution time, memory footprint, and scalability 

In Table 2.1, we present the running time (measured in seconds), peak memory (measured in 
GBytes), and CPU average usage obtained for different executions of the UC12 on an Intel Xeon 
Platinum computing node. It is important to highlight that these results vary from the ones presented 
on D5.1 (Table 4) as the EDDLL is under development and performance results may change on 
newer versions of the library.  

Batch Size Time(s) Memory(MB) CPU Usage 

1 5865.80 2559.94 31.63% 

2 5815.43 3028.91 32.29% 

4 5953.64 3883.02 33.17% 

8 5874.45 5684.04 33.02% 

12 5753.99 2253.99 32.88% 

24 5744.85 2244.85 32.79% 

48 5710.89 2438.25 32.69% 

Table 2.1. Time performance (measured in seconds) and memory consumption (measured in GBytes) of the 
UC12 Classification (training 200 samples for 2 epochs) executed on an Intel Xeon Platinum varying number 

of threads and the input batch size (using EDDLL v0.5.4-alpha). 
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As the results in Table 2.1 show, the execution time is insensitive to the input batch size and the 
average memory required is 3.1GB. Also, note that the EDDLL baseline (v0.5.4-alpha) is insensitive 
to the number threads set by the user. At the moment, the library automatically detects the number 
of virtual CPUs available and spawns as many threads as it deems necessary to maximize the 
system utilization. For the executions presented in Table 2.1, the EDDLL assumes that all CPUs on 
the system are available (i.e., 48 in the case of the Intel Xeon Platinum). However, the average 
CPU utilization is low for all the executions, barely reaching a 33% of the peak core capacity.  

A more detailed analysis (Figure 2.1) shows that the CPUs are being underutilized, almost idle for 
more than 77% of the execution time. Figure 2.1 shows that the executions of the UC12 
Classification alternate between parallel regions that attempt to exploit the 48 cores and sequential 
regions where single-threaded functions are executing meanwhile the remaining 47 cores are idle. 
As a result, the overall core exploitation is very low with scarce peaks of parallel activity.  

 

Figure 2.1. Sample CPU utilization histogram for 10 CPUs and the overall system core exploitation (i.e., CPU 
Time) executing the baseline version of the EDDLL (UC12, training 200 samples for 2 epochs) on an Intel 

Xeon Platinum. 

2.2.2 Critical functions and hardware exploitation 

In order to narrow down the source of inefficiencies and determine the main performance 
bottleneck, we perform several function-level profile analysis of the EDDLL. In Table 2.2, we present 
the most time consuming functions together with some basic hardware performance metrics.  

These results show that almost 96% of the user time is spent doing basic linear algebra operations 
(e.g., matrix multiplications, additions, or transpositions) within the Eigen library. Moreover, 96% of 
the retired instructions correspond to Eigen’s functions. Then, for all the main matrix multiplication 
functions, the overall CPI achieved is reasonably good, near the theoretical optimum 0.25. In 
contrast, the general block packed product kernel (gebp_kernel) depicts a very high CPI rate of 3. 
This result is specially concerning as the gebp_kernel is among the most critical functions of the 
EDDLL. Furthermore, the matrix data mapping functions (e.g., copy of matrices) also achieve a poor 
CPI indicating performance issues when handling matrix memory.  

Besides, the results point out a non-negligible amount of cycles (~2 TCyles) spent on OpenMP 
functions. These functions correspond to thread handling and synchronization operations. Hence 
the poor CPI rate which suggests synchronization issues or penalties associated with inadequate 
thread handling. 

In addition, results on Table 2.2 indicate that proper EDDLL and ECVL functions have a minor 
impact on the overall execution time (as for the baseline implementation). More specifically, the 
most time-consuming functions of the EDDLL are im2col, add_pixel, and get_pixel, which amount to 
less than the 1% of the overall user time. 
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Function % Time Cycles Inst. CPI Module 

Eigen::internal::general_matrix_matrix_product 63.50% 42.51 T 126.61 T 0.34 Eigen 

Eigen::internal::general_matrix_matrix_product 17.17% 11.47 T 34.16 T 0.34 Eigen 

Eigen::internal::gebp_kernel 11.82% 7.92 T 2.64 T 3.00 Eigen 

Eigen::internal::general_matrix_matrix_product 3.45% 2.32 T 6.90 T 0.34 Eigen 

func@0x189a0 1.78% 1.21 T 57.63 G 20.99 OMP 

func@0x18810 1.32% 887.60 G 46.50 G 19.09 OMP 

im2col 0.46% 318.22 G 430.09 G 0.74 EDDLL 

get_pixel 0.15% 105.56 G 79.43 G 1.33 EDDLL 

Eigen::internal::blas_data_mapper 0.14% 87.50 G 14.69 G 5.96 Eigen 

add_pixel 0.08% 48.86 G 62.75 G 0.78 EDDLL 

Eigen::internal::blas_data_mapper 0.07% 46.90 G 9.12 G 5.14 Eigen 

Eigen::internal::blas_data_mapper 0.02% 11.34 G 9.79 G 1.16 Eigen 

cpu_mpool2D._omp_fn.0 0.01% 9.10 G 21.58 G 0.42 EDDLL 

ecvl::RearrangeChannels 0.01% 6.86 G 14.69 G 0.47 ECVL 

cpu_conv2D_back._omp_fn.4 0.01% 7.00 G 6.68 G 1.05 EDDLL 

Table 2.2. Profile summary of the most time-consuming functions for the baseline version of the EDDLL 
(UC12 Classification, training 200 samples for 2 epochs) executed on an Intel Xeon node. For each function, 
the table displays user time percentage (with respect to the overall user time taken by the execution), cycles, 

instructions, cycles per instruction (CPI), and the module each function belongs to (i.e., EDDLL, ECVL, 
OpenMP, or Eigen). 

Focusing on those functions performing actual DNN computations, we proceed to analyze a more 
detailed profile report that will help understand the source of the main performance bottlenecks. In 
the following, we present a brief description of the performance counters captured using Intel Vtune 
and presented in Table 2.3. 

 Retiring: This metric represents the pipeline slots fraction utilized by useful work, meaning 
the issued uOps that eventually get retired. Retiring of 100% would indicate the maximum 
possible number of uOps retired per cycle has been achieved. Maximizing Retiring typically 
increases the Instruction-Per-Cycle metric.  

 Front-end Latency: This metric represents the pipeline slots fraction during which the CPU 
was stalled due to front-end latency issues (e.g., instruction-cache misses or fetch stalls 
after a branch misprediction).  
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 Front-end Bandwidth: This metric represents the pipeline slots fraction during which the CPU 
was stalled due to front-end bandwidth issues (e.g., inefficiencies in the instruction 
decoders). 

 Bad Speculation: Bad Speculation represents the pipeline slots fraction wasted due to 
incorrect speculations (e.g., mispredicted branches or incorrect data speculation followed by 
memory ordering nukes). 

 Memory Bound: This metric measures the fraction of slots during which the pipeline could be 
stalled due to demand load or store instructions. 

 Divider: This metric represents the fraction of cycles the divider unit was active (i.e., divisions 
and square roots). 

 Port Utilization: This metric represents the fraction of cycles during which an application was 
stalled due to core non-divider-related issues (e.g., data-dependency, overloading of specific 
ports). 

 FPU Utilization: This metric represents the utilization of the vector capacity by the vectorial 
floating point computations. 

Function Eigen Matrix 
Multiplication im2col get_pixel add_pixel 

Eigen Data 
Mapper 

ECVL 
Rearrange 
Channels 

Retiring 11.4% 40.1% 20.2% 30.9% 3.7% 41.9% 

Front-end Latency 54.0% 11.2% 2.9% 16.8% 0.1% 0.0% 

Front-end Bandwidth 49.4% 11.6% 12.8% 19.0% 0.3% 10.4% 

Bad Speculation 19.0% 0.0% 11.5% 10.4% 1.2% 0.0% 

Memory Bound 0.6% 16.0% 24.8% 2.0% 90.5% 3.6% 

Divider 0.0% 42.1% 56.0% 70.6% 0.0% 57.3% 

Port Utilization 97.7% 16.2% 21.9% 18.0% 3.7% 61.4% 

FPU Utilization 25.0% 6.3% 6.3% 6.3% 0.0% 6.3% 

Table 2.3. Selected performance counters of the most time-consuming functions for the baseline version of 
the EDDLL (UC12, Training 200 samples for 2 epochs) executed on an Intel Xeon node. 

First and foremost, results in Table 2.3 show that the execution of Eigen’s functions related to matrix 
multiplication suffer from continuous stalls in the front-end. That is, for more than the 50% of the 
pipeline slots, the front-end was stalled. As a result, only 11,4% of the pipeline slots were utilized by 
useful work. In spite of this, note that the hardware operation ports appear to be saturated 
meanwhile the floating-point unit is only used at 25% of its capacity. After rejecting other possible 
explanations, these numbers come to suggest that the microcode sequencer is issuing uOps to the 
back-end to address some modes of operation (Microcode assist), like in Floating-Point assists. 
This performance issue is concerning due to the relevance of these operations for the EDDLL 
performance as it can lead to severe execution slowdowns. 

Concerning the remaining Eigen’s operations (i.e., data mapping functions), we can see that these 
functions are severely memory bound. That is, the pipeline is stalled for more than 90% of the 
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available slots. In turn, this causes that only 3.7% of the pipeline slots are utilized by useful work. 
These stalls in memory operation suggest pressure in the memory hierarchy, unaligned memory 
accesses, pressure on high demand load or store instructions, or other memory related issues. 

For the remaining functions, that is, the most time consuming functions from the EDDLL and ECVL 
libraries, the results show that their retirement rate is also slightly low. Although the port utilization is 
low, the divider utilization is significantly high (70.6% for the add_pixel function). This means that 
the code for these functions is stressing this operational unit. This suggests it is advisable to review 
these functions towards accelerating or optimizing these operations. 

2.2.3 Call graph and detailed analysis of critical kernels 

In the previous section we have identified the most critical functions and their exploitation of the 
available hardware resources. This way, we aim to narrow our analysis on those functions with 
critical performance. For the sake of optimizing and adapting these functions to the HPC 
infrastructure, it is important to understand their interaction with the library. In this section, we aim to 
give a general overview of the usage of these computational kernels, their function within the library, 
and their interaction with other functions. 

Considering the results presented in Table 2.2, we can assess that the most computational 
intensive functions involve performing matrix operations with the layers of the DNN. In particular, 
those operations lie at the core of the forward and backward propagation functions during the 
training of the DNN. Unsurprisingly, these functions represent the most computing-critical 
components of every modern DL framework. In the case of the EDDLL, these functions represent 
more than 99% of the execution time, devoted to training the model.  

Figure 2.2 depicts the timeline of the EDDLL functions for training batches of images. Batches are 
trained in sequential order using the function train_batch_t. For each batch trained, the majority of 
the time is spent on do_forward and do_backward (forward and backward propagation, 
respectively). 

 

 

Figure 2.2. Timeline representation of the EDDLL functions involved in training a DNN using N batches of 
input images. 

 

More specifically, Figure 2.3 summarizes the call graph from the high-level function train_batch_t 
down to the individual kernel functions that perform the matrix operations using Eigen; that is, 
EDDLL’s most time-consuming kernels. The functions cpu_conv2D, cpu_conv2D_grad, and 
cpu_conv2D_back are in charge of performing the 2D convolution for the forward and backward 
propagation. Roughly speaking, these are the functions responsible for calling Eigen’s routines to 
perform a series of matrix operations on each sample of the batch, taking more than 99% of the 
execution time. 

Note that each of these functions operate over a single input batch in mutual exclusion from other 
batches (or epochs) during training. This allows offloading the computations of the whole batch to a 
hardware accelerator. However, computing each batch in mutual exclusion represents a potential 
bottleneck as the training process is forced to serialize computing work between batches and 
epochs. 
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Figure 2.3. Simplified pseudocode of the DNN train method (traing_batch_t) and the chain of calls down to 
cpu_conv2D, cpu_conv2D_grad, and cpu_conv2D_back. 

 

More in depth, Figure 2.4. shows a simplified version of the cpu_conv2D, cpu_conv2D_grad, and 
cpu_conv2D_back functions. In essence, these functions perform matrix additions, multiplications, 
and transpositions through calls to Eigen’s routines.  

In particular, the functions cpu_conv2D and cpu_conv2D_back depict a map computation pattern 
where all the batches can be processed independently. In contrast, the function cpu_conv2D_grad 
presents a reduction pattern that forces to combine (i.e., matrix addition) the product of processing 
each sample of the batch into a single matrix (i.e., D->matgK). Nonetheless, cpu_conv2D_grad 
code can be reorganized so that the reduction is performed at the end of the function, allowing 
independent computations at the cost of extra memory to store the intermediate matrices. 

Anyhow, these computation patterns allow processing each batch sample independently. Thus, the 
three for-loops on Figure 2.4 can be parallelized using as many threads as the size of the batch 
(never exceeding the total number of logical CPUs to avoid oversubscription). The implementation 
of this coarse-grain parallelization was suggested during the early stages of T2.4 and has been 
successfully integrated into the current EDDLL baseline. 
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Figure 2.4. Simplified pseudocode of the CPU implementations of cpu_conv2D, cpu_conv2D_grad, and 
cpu_conv2D_back. 

All in all, each kernel function performs a simple matrix operation (i.e., multiplication, auditions, and 
transposition) for each batch sample. At this level, Eigen allows fine-grain parallelization of these 
operations. The current EDDLL baseline allows Eigen to use as many threads as cores are 
available in the hardware platform. However, we must stress the fact that parallel computations 
entail certain overheads (e.g., thread creation, resource allocation, or thread dispatch) and 
synchronization penalties. For those reasons, it is key that the computation payload provided to 
these critical functions is large enough to maximize the utilization of the hardware resources 
available. Otherwise, the EDDLL executions can incur in severe penalties that, ultimately, would 
render the available computing cores underutilized. 

2.2.4 Performance bottlenecks 

Thus far, we have presented a comprehensive characterization of the performance of the EDDLL. 
We have identified the most critical functions and their interactions with the library. Additionally, we 
have analyzed the overall exploitation of the available hardware resources and identified the main 
performance problems. In this section, we summarize the execution bottlenecks found on the 
EDDLL baseline and their underlying cause, so we can point out the most effective optimizations to 
tackle these inefficiencies. 
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Overall, executions using the EDDLL are computationally bound and require large amounts of 
memory, depending on the batch size configured. In particular, the most computationally intensive 
kernels of the library are devoted to the forward and backward propagation during the training of the 
DNN. These critical kernels perform relatively simple matrix operations using Eigen's linear algebra 
functions. These functions involve intensive computations on floating-point data. As the results on 
Table 2.3 indicate, these functions miss to fully exploit the Single-Instruction Multiple-Data (SIMD) 
capabilities of the architecture. More importantly, their execution is limited by severe front-end stalls, 
caused by the microcode sequencer (MS) when processing denormals numbers. For that, it is 
paramount to overcome the penalties caused by the denormals’ executions (e.g., activating the 
FTZ/DAZ modes) and enable the use of wider SIMD instructions that can fully take advantage of the 
vector processing units available in the processor. 

Moreover, we have found that many of the memory operations (i.e., load and stores) operate on 
unaligned memory. This causes a significant pressure on the memory resources of the processor 
(Table 2.3), which degrades the CPI of memory intensive functions (e.g., Eigen’s memory mapping 
operations) and ultimately slowdowns the overall execution of the EDDLL. Furthermore, working 
with unaligned memory prevents the use of memory-aligned SIMD instructions that can vastly 
improve the execution of the critical kernels. 

Beyond these hardware exploitation inefficiencies, the overall CPU utilization is very low (Figure 
2.1). On the higher CPU-utilization parts of the execution, these results reveal that the utilizations is 
below the core peak capacity. This is the result of severe thread handling overheads and large 
synchronization waiting times (Table 2.2). Whereas, on the lowest CPU-utilization parts, we can 
clearly identify parts of the code that run sequentially or have such strong synchronization 
restrictions that cannot exploit more than a single core. In consequence, the performance of the 
execution is heavily limited, especially in highly parallel platforms such as the HPC infrastructure of 
Marenostrum4. For that, we suggest investigating and evaluating the parallelization strategy 
implemented on the EDDLL, identify performance penalties derived from mismanagement of 
parallel threads, and evaluate the parallelization of those functions that are currently executed 
sequentially on a single thread. 

Altogether, these performance issues cause significant slowdowns and the underutilization of the 
available hardware resources. Nonetheless, the majority of these performance issues can be easily 
mitigated or resolved. For this reason, the current EDDLL baseline shows large potential for 
performance improvement. 

2.2.5 Performance of the PyEDDLL in CPU and GPU environments 

In this section we analyze the profiling results obtained for the PyEDDLL in different CPU/GPU 
environments, and we compare them with another reference Deep Learning library 
(Keras/Tensorflow). Since most use cases are not yet fully ported to the EDDLL/ECVL ecosystem, 
we will rely on the network architecture designed for UC13: Epileptic seizures detection. This 
network is described in detail in deliverable “D2.6: EDDLL adaptation to cloud environments”, and 
basically consists of 5 convolutional layers followed by 2 dense layers. The input is just the raw 
multi-lead EEG signal, so no preprocessing is required. 

The system used for the benchmarks was a computing server with 2 Dual Intel Xeon Gold 6154 
CPUs (36 cores, 72 threads), with a maximum processor speed of 3.70 GHz and 384 GB of RAM 
memory, while the GPU is a NVIDIA Tesla T4 with 16 GB of memory. The installed operating 
system is CentOS v7.7. 
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Library CPU/GPU Time per epoch (s) Speedup Nº Measures 

Pyeddll CPU 1 core 452 ± 7,09 Reference 150 

Pyeddll CPU 4 cores 246 ± 4,66 1,84x 150 

Pyeddll GPU 5,569 ± 0,02 81,16x 750 

Keras CPU 1 core 17,09 ± 0,37 Reference 750 

Keras CPU 4 cores 11,05 ± 0,35 1,54x 750 

Keras GPU 0,724 ± 0,31 23,60x 750 

Table 2.4. Speedup comparison between single-core, multi-core and GPU execution for UC13 training.  

Table 2.4 shows the profiling results of training the network with the full CHB-MIT public database 
(https://physionet.org/content/chbmit/1.0.0/) for a different number of epochs, both for the PyEDDLL 
and Keras implementations. If we take as a reference the single-core execution, the speedup 
achieved by PyEDDLL is significantly higher than that achieved by Keras/Tensorflow, both for the 
multi-core environment and specially for GPU, in which the speedup is more than 80x. However, if 
we focus on the absolute execution time numbers, there is still a great margin for improvement on 
the PyEDDLL, which shows running times per epoch that are between 7,7x and 26x slower than 
Keras/Tensorflow for the same architecture and training task. No relevant differences were 
observed in the classification accuracy of the different models. 

It is important to notice that these results correspond to a single network architecture and base 
dataset, so as more use cases are ported to the EDDLL it will be possible to complement these 
results and provide a more accurate overview of the performance offered by the library. 

3 Algorithm adaptation and optimizations for CPUs 

In this section, we present a series of optimizations based on the performance insights described on 
Section 2. As a result of this task effort, we have implemented these optimizations and algorithm 
adaptations into an improved version of the EDDLL we denote as CPU-Optimized EDDLL. In the 
following subsections, we described the optimizations implemented into the CPU-Optimized EDDLL, 
the main inefficiencies and bottlenecks these modifications target, and some technical suggestions 
to further improve the performance of the library. Additionally, we present a comprehensive 
characterization of the CPU-Optimized EDDLL. To sum up, we briefly recapitulate the most notable 
results of the CPU adaptation and optimization. 

3.1 Bottlenecks and performance optimizations 

3.1.1 Floating-point denormal execution 

Broadly speaking, a denormalized number (a.k.a. denormals) is any non-zero number with 
magnitude smaller than the smallest normal number encoded using the IEEE 754 floating point 
standard.  

In most applications, processing denormal numbers is uncommon. For that reason, many 
processors don’t handle them directly and generate a trap which resolves their operation using 
microcode (i.e., small programs injected into the execution stream). This process is referred to as 
x87 floating-point assists (FP Assists) and tends to stress the microcode sequencer (MS), causing 
multiple machine resets, and resulting ultimately in major front-end stalls. In the case of executions 
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using the EDDLL (UC12, Classification training), this issue causes the stall of the front-end during 
more than 50% of the pipeline slots (Table 2.3).  

In general, denormal numbers are an issue for the performance of most processors. In some 
situations, handling denormals can produce drops in performance up to 10x or more. For that 
reason, many processors provide instructions to process these numbers in hardware, without calling 
a software exception, at the cost of losing strict IEEE 754 standard compliance. In the case of Intel, 
the SSE and SSE2 instructions were added towards solving this issue. Thus, note that SSE/SSE2 
and x87 operations are handled differently.  

To avoid serialization and performance issues due to denormals, it is recommended to use the SSE 
and SSE2 instructions to set Flush-to-Zero (FTZ) and Denormals-Are-Zero (DAZ) modes within the 
hardware to improve performance for floating-point applications. 

In order to assess the impact of processing denormals using the EDDLL, in Table 3.1 we present a 
comparison of the baseline version (Denormals) against a compilation of the EDDLL activating the 
FTZ/DAZ modes (No-Denormals). The results reveal that the baseline version triggers FP Assists 
59,1% of the times it has to execute a FP operation. Meanwhile the No-Denormals version does not 
require any at all. This is reflected in the dramatic reduction of the amount of switches to the 
microcode sequencer (MS Switches) and the machine clears. Ultimately, this is reflected in the total 
number of retired instructions (i.e., 5.7x less instructions) and reduces the execution cycles by 5,67x 
(core cycles, not wall-clock time). Consequently, this affects the overall execution time achieving a 
speedup of 2.57x (Table 3.2). 

 

 

Denomals No-Denormals 

Cycles 355.00 T 62.55 T 

Instructions 919.73 T 160.57 T 

CPI 0.39 0.39 

FP float 41.97 G 36.75 G 

FP double 7.71 G 6.86 G 

FP 128bits 8.74 T 7.58 T 

FP 256bits 0 0 

FP 512bits 0 0 

FP Assist 29.41 G 0 

MS Switches 425.05 G 20.90 G 

Machine Clears 55.36 G 336.87 M 

MS uops 2.87 T 189.06 G 

Table 3.1. Performance counters related to floating-point execution and microcode sequencer (MS) for the 
baseline version and the No-Denormals version of the UC12 Classification (training 200 samples for 2 

epochs) executed on an Intel Xeon Platinum. 
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Time (s) Cycles Inst. CPI Loads Stores L1Miss L2Miss L3Miss 

Denomals 5710.89 355.00 T 919.73 T 0.39 235.44 T 263.26 G 49.12 G 9.09 G 1.89 G 

No-Denormals 2259.63 62.55 T 160.57 T 0.39 38.00 T 223.96 G 42.93 G 8.60 G 1.72 G 

Table 3.2. Performance results for the baseline version and the No-Denormals version of the UC12 (training 
200 samples for 2 epochs) executed on an Intel Xeon Platinum. 

 

3.1.2 Unaligned memory accesses and SIMD instructions 

It is broadly documented that operations on unaligned memory have a significant impact on 
performance. Some hardware instructions suffer from performance penalties if executed on 
unaligned memory addresses (e.g., being forced to execute extra instructions to load/store the 
data), some others can't actually perform reads on non-aligned addresses (i.e., generate an 
exception).  

For instance, some of Intel’s SSE instructions mandate special alignment. Most notably, 128bits, 
256bits, or 512bits SIMD instructions require alignment to 16Bytes, 32Bytes, or 32Bytes memory 
boundaries, respectively. In case the alignment restrictions are not met, the performance of these 
instructions can severely degrade or even raise an exception if the alignment is mandatory. This 
way, operating with aligned memory allows using wider SIMD instructions and can reduce the 
latency and bandwidth requirements of memory instructions. For that reason, alignment and 
arrangement of data memory can make a big difference in performance. Using memory-aligned 
SIMD instructions not only reduces the overall number of instructions, allowing a more efficient 
vectorization, but also increases the performance of load/store instructions. In turn, this alleviates 
the pressure on the front-end resources and improves the overall performance. 

The EDDLL implements a custom memory allocator for large memory allocations, mainly Tensors’ 
memory, called get_fmem. This function is implemented on top of the operator ‘new’ that ultimately 
requests virtual memory from the OS. However, the operator ‘new’ does not guarantee that the 
memory returned is aligned beyond the 8 Bytes boundaries (nor does malloc or mmap for that 
matter).  

Notwithstanding the advanced memory-alignment features that the Eigen library has in place, doing 
the allocation using this custom allocator prevents the usage of wider SIMD instructions as the 
memory alignment cannot be guaranteed. This results in the execution of suboptimal Eigen code 
that is robust enough to handle any memory alignment at the cost of a major performance loss.  

Figure 3.1 shows the compiled x64-86 machine code for the EIGEN_GEBP_ONESTEP core 
function using the AVX512 vector instruction set. This function lies at the core of the matrix to matrix 
multiplication within the Eigen library. The SEE code blocks handle unaligned memory access, 
working with 4x less data per instructions (i.e., 128bits). 
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Figure 3.1. Intel x86-64 AVX512 assembly code for the EIGEN_GEBP_ONESTEP core processing block 
from Eigen’s matrix to matrix multiplication function (22 instructions). 

For the reasons presented before, we recommend modifying the custom allocator to make it return 
memory blocks aligned to 64Bytes (i.e., 512bits words). This can be easily achieved using C11 
aligned_alloc function, POSIX compliance posix_memalign() function, or enhancing the custom 
allocator get_fmem to guarantee memory alignment. In turn, this will allow compiling the EDDLL 
natively (i.e., in gcc using “-march=native”). For instance, in the case of the Intel Xeon Platinum, this 
will allow using AVX512 instructions and maximize the FPU utilization. Moreover, this will reduce the 
overall number of retired instructions and improve considerably the execution time of the EDDLL. 

3.1.3 Multithreading performance and nested parallelism   

Results from Section 2.2 (Figure 2.1) suggest a low CPU utilization, possibly due to overheads on 
thread handling and synchronization penalties. Table 3.3 presents a summary of the performance of 
the system calls for the execution of UC12 (training) using the baseline EDDLL and the CPU-
Optimized EDDLL. For the baseline version, the results show that there is an unusual number of 
calls to futex and clone. Indeed, the remarkably high number of calls to futex, and the large time 
spent on them is a clear indication of frequent and lasting synchronization waiting times. In the 
same manner, the elevated number calls to clone indicates the recurrent creation and destruction of 
threads during the execution. Moreover, the creation of new threads involves setting up internal 
thread structures (e.g., attributes) and allocating working memory, resulting in an elevated number 
of calls to mmap, munmap, madvise, mprotect, and set_robust_list. 

A more detailed inspection of the EDDLL baseline reveals that the library employs two different 
multithreading libraries (i.e., OpenMP and Pthreads) to implement parallel processing sections. This 
is generally discouraged as the two multithreading implementations can be incompatible, causing 
many performance issues, or even runtime errors. In the case of the EDDLL, the Pthread library is 
used to create and dispatch a thread that executes the training for a single batch, and the OpenMP 
library is used to parallelize the processing of each individual sample within the batch (Figure 2.4). 

OpenMP implements a pool of working threads to avoid the overheads of creation/destruction of 
threads. Whenever a parallel section is encountered, or a task is ready for being processed, the 
OpenMP dispatcher selects a thread from the pool and assigns work to it. In practice, this 
mechanism is proven to be very efficient. Nevertheless, the OpenMP pool of threads is stored in 
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thread-local data which, in the case of the EDDLL, refers to the pthread created to handle each 
batch. Whenever the whole batch has been processed, the pthread is destroyed (i.e., pthread_join) 
and the OpenMP thread pool too. As a result, the OpenMP is repeatedly creating and destroying 
pools of thread each time a new batch is processed. 

Furthermore, the EDDLL allows Eigen to further parallelize the execution of its functions. This 
triggers the OpenMP nested behavior (OMP_NESTED), that allows each OpenMP thread to spawn 
threads on its own. Nonetheless, the newly created threads by the Eigen library (nested to each 
batch-sample thread) are not returned to the pool of threads. OpenMP’s internal implementation of 
the pool opts to destroy these surplus of threads, leaving the pool with no more than the maximum 
number of configured working threads (i.e., OMP_NUM_THREADS). 

 

 

Baseline CPU-Optimized 

System Call Calls CPU Time (s) Calls CPU Time (s) 

futex 1303802 2633.97 18334 92.96 

clone 417379 0.56 49 0.00 

set_robust_list 417378 0.47 48 0.00 

madvise 417377 11.76 0 0.00 

mmap 389320 0.81 2130 0.23 

munmap 389151 3.62 1896 2.09 

mprotect 387401 0.41 786 0.27 

read 5373 0.02 5398 0.02 

open 1975 0.01 2000 0.00 

brk 942 0.00 1148 0.00 

fstat 815 0.00 815 0.00 

write 25 0.00 25 0.00 

Table 3.3. Comparison of the number of system calls performed by the baseline and the CPU-Optimized 
version of the EDDLL executing the UC12 Classification (training 200 samples for 2 epochs) on an Intel Xeon 

Platinum. 

On top of that, a closer analysis reveals that the amount of useful work assigned to each of the 
Eigen’s threads (computational payload) is insufficient to compensate for the cost of thread setup, 
dispatch, and synchronization. Profiling the executions of the UC12 Classification (training), we 
observe that the average matrix size processed by Eigen ranges from 2 to 5 million elements (i.e., 
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FP). Even the largest observed matrix processed by Eigen only contains 28 million elements. The 
resolution of this fine-grain parallelism demands a more efficient thread management. 

Regrettably, these unfortunate conditions make the EDDLL spend a non-negligible amount of time 
creating and destroying threads. Due to this disarrangement, many of the running threads became 
idle, meanwhile the working threads lack enough computational payload that compensates. 

 

Figure 3.2. Simplified pseudocode of the run_snets function in charge of dispatching/offloading the 
processing of batch to each working thread/device. 

All in all, the situation requires selecting only one multithreading library for parallel processing. In 
our opinion, OpenMP is the most suitable choice due to its versatility, high-level abstraction, and 
parallel expressiveness. This way, we suggest replacing the Pthread creation on “net_api.cpp” at 
the method Net::run_snets with an OpenMP taskloop construction (Figure 3.2). Similarly, we 
strongly advise to replace all mutexes, locks or semaphores with OpenMP locks (i.e., omp_lock_t). 
We advise for reducing the interactions between different multithreading frameworks and attain a 
robust code based solely on OpenMP. 

Besides, we deem the parallelization of Eigen’s functions ineffective provided that the selected 
batch size is larger than the number of available CPU cores. In those cases where each core can 
be assigned the workload of processing a sample, a coarse-grain parallelization approach is 
preferred in terms of performance. Therefore, we recommend configuring Eigen to execute single-
threaded (i.e., calling setNbThreads(0)) and to disable the nesting and dynamic behaviors of 
openMP (i.e., OMP_NESTED and OMP_DYNAMIC, respectively). 

3.1.4 Sequential execution of support functions 

So far, we have analyzed those performance issues that limit the performance of the inherently 
parallel parts of the library. Nevertheless, the executions of the UC12, using the EDDLL, depict 
sequential code regions that deteriorate the overall performance. Consider the results on Table 3.4 
showing the scalability speedup of the CPU-Optimized EDDLL increasing the number of threads 
and the batch size. Roughly speaking, these numbers suggest that the optimized version scales on-
par to the theoretical optimum up to 8 threads. However, executions using 24 threads or more are 
2x-3.4x below the optimal performance. Provided that there is enough workload to distribute across 
threads (i.e., the bath size is sufficiently large) and the thread management is adequate, the parallel 
sections of the code should reach peak CPU. Hence, we suspect that the sequential code sections 
of the EDDLL have become the main performance bottleneck after incorporating all the previous 
optimizations. 
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Threads 

1 2 4 8 24 48 

Batch size 

1 1.00x 1.04x 1.04x 1.05x 1.05x 0.99x 

2 1.00x 1.81x 1.83x 1.86x 1.80x 1.72x 

4 1.00x 1.85x 3.24x 3.31x 3.24x 3.07x 

8 1.00x 1.90x 3.40x 5.59x 5.48x 5.30x 

12 1.00x 1.90x 3.43x 4.74x 7.43x 7.09x 

24 1.00x 1.92x 3.49x 5.95x 10.98x 10.81x 

48 1.00x 1.92x 3.51x 6.02x 11.54x 14.56x 

Table 3.4. Scalability of the CPU-Optimized version of the EDDLL, executing the UC12 (training 200 samples 
for 2 epochs) on an Intel Xeon Platinum, varying the number of threads used and the image batch size. 

 

Figure 3.3 helps to identify the culprit showing the CPU utilization histogram obtained from 
executing the UC12 (training) using the CPU-Optimized version of the EDDLL. On the histogram we 
observe the regions labeled as 1, 2, and 3 where the only thread active is the OpenCV dispatcher. 
More specifically, these regions correspond to the loading of the batch images from disk. Not only 
each image is loaded sequentially but also the whole batch has to be read before the next training 
process can begin. On top of that, OpenCV functions to read and prepare the samples take a non-
negligible time to complete (i.e., 166 ms per image on average). 

 

 

Figure 3.3. Sample CPU utilization histogram for 11 OS threads (i.e., OpenCV dispatcher and 10 EDDLL 
worker threads) and the overall system CPU exploitation (i.e., CPU Time) executing the CPU-Optimized 

version of the EDDLL (UC12 Classification, training 200 samples for 2 epochs) on an Intel Xeon Platinum. 
Sequential code sections have been squared in black and labeled 1, 2, and 3 corresponding with the batch of 

samples they read from disk. 
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3.2 Performance characterization of the CPU-optimized EDDLL 

As we outlined before, all the suggested optimizations have been incorporated on a CPU-Optimized 
version of the EDDLL. To further characterize the performance of the library and better understand 
its current limitations, we present the results of executing and profiling the optimized version. 
Likewise it was presented in Section 2, we first analyze the scalability of the library with an 
increasing number of threads and for different batch sizes. Then, we identify the most-time 
consuming functions when executing the CPU-Optimized library for both training and inference. 
Finally, we present experimental results on the Power9 HPC platform for CPU and GPU executions. 

3.2.1 Execution time, memory footprint, and scalability 

For the CPU-Optimized EDDLL, Table 3.5 shows the scalability results of the library, executing the 
UC12 classification (training), with an increasing number of threads and for different batch sizes. 
Compared to the single-thread execution, scalability is on-par to the theoretical optimum up to 8 
threads. Then, increasing even the number of threads, cause that the penalization of executing the 
sequential sections of the library dominate the execution time. Although the overall execution time 
decreases significantly, the scalability speedup stalls reaching a peak improvement of 14.56x using 
48 threads and sufficiently large batches (see Table 3.4).  

Skin Lesion Classification 
(Training) 

Threads 

1 2 4 8 24 48 

T Mem T Mem T Mem T Mem T Mem T Mem 

Batch size 

1 2065 2.5 1990 2.5 1978 2.5 1970 2.5 1963 2.7 2079 2.9 

2 1973 2.9 1093 2.9 1080 2.9 1060 3.0 1097 3.1 1148 3.3 

4 1895 3.7 1025 3.8 585 3.9 573 4.0 585 4.1 618 4.3 

8 1861 5.4 981 5.5 547 5.7 333 6.3 340 6.4 351 6.7 

12 1761 7.2 928 7.3 514 7.6 372 8.1 237 8.8 249 9.0 

24 1761 12.7 915 12.8 504 13.0 296 13.5 160 15.8 163 16.0 

48 1757 23.8 917 23.8 501 23.9 292 24.3 152 26.5 121 29.9 

Table 3.5. Time performance (measured in seconds) and memory consumption (measured in GBytes) of the 
CPU-optimized EDDLL, executing the UC12 Classification (Training 200 samples for 2 epochs) on an Intel 

Xeon Platinum, varying the number of threads and the input batch size. 

 

As for the executions of the UC12 classification (inference), the effect of the sequential code regions 
is even stronger. As the results in Table 3.6 show, increasing from 8 to 24 threads yields a small 
speedup of 2x; and increasing to 48 threads gives a marginal improvement of approximately 1s.  
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Skin Lesion 
Classification 

(Inference) 

Threads 

1 2 4 8 24 48 

T Mem T Mem T Mem T Mem T Mem T Mem 

Batch size 

1 461 1.6 442 1.6 440 1.6 441 1.6 440 1.6 443 1.6 

2 442 2.0 238 2.0 241 2.0 238 2.0 241 2.0 251 2.0 

4 438 2.8 230 2.9 130 2.9 130 2.9 131 2.9 130 2.9 

8 432 4.5 228 4.6 127 4.6 74 4.8 76 4.8 79 4.8 

12 418 6.2 220 6.3 120 6.3 87 6.5 55 6.6 55 6.6 

24 426 11.3 218 11.3 119 11.4 71 11.5 37 12.1 38 12.1 

48 421 21.5 220 21.5 119 21.6 69 21.7 36 22.3 29 23.1 

Table 3.6. Time performance (measured in seconds) and memory consumption (measured in GBytes) of the 
CPU-optimized EDDLL, executing the UC12 Classification (Inference of 200 samples) on an Intel Xeon 

Platinum, varying the number of threads and the input batch size. 

3.2.2 Critical functions and hardware exploitation 

More in detail, Tables 3.7 and 3.8 show a relation of the most-time consuming functions for the 
execution of the UC12 Classification performing training and inference, respectively. As expected, 
we find the same functions that appear profiling the baseline version. Nevertheless, Eigen’s 
functions have remarkably improved their running time. This improvement on the Eigen execution 
causes that the most time-consuming functions of the optimized version are the EDDLL’s im2col, 
get_pixel, and add_pixel.  

 UC12 Classification Training % Time Cycles Inst. CPI Module 

im2col 30.96% 1.64 T 2.26 T 0.73 EDDLL 

Eigen::internal::gebp_kernel 15.63% 786.05 G 1.99 T 0.40 EDDLL 

func@0x18810 10.39% 549.36 G 27.83 G 19.74 OMP 

func@0x189a0 8.77% 461.57 G 23.01 G 20.06 OMP 

get_pixel 8.08% 426.15 G 331.46 G 1.29 EDDLL 

add_pixel 7.42% 397.70 G 474.80 G 0.84 EDDLL 

cpu_conv2D_back._omp_fn.4 5.15% 274.56 G 17.54 G 15.66 EDDLL 

func@0x18190 3.34% 176.70 G 8.07 G 21.90 OMP 

Eigen::internal::blas_data_mapper 4.97% 263.31 G 45.25 G 5.81 EDDLL 

cpu_conv2D_grad._omp_fn.2 1.48% 77.66 G 6.92 G 11.23 EDDLL 

cpu_d_relu._omp_fn.1 0.75% 39.53 G 41.09 G 0.96 EDDLL 

cpu_mpool2D._omp_fn.0 0.69% 36.50 G 88.04 G 0.42 EDDLL 
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cpu_fill_._omp_fn.2 0.62% 34.05 G 5.76 G 5.91 EDDLL 

ecvl::RearrangeChannels 0.60% 32.21 G 66.48 G 0.48 ECVL 

cpu_relu._omp_fn.0 0.59% 30.84 G 4.16 G 7.42 EDDLL 

cpu_conv2D._omp_fn.0 0.56% 29.33 G 3.11 G 9.44 EDDLL 

Table 3.7. Profile summary of the most time-consuming functions for the UC12 Classification (training 200 
samples for 2 epochs), using the CPU-Optimized EDDLL, executed on an Intel Xeon Platinum. For each 

function, the table displays user time percentage (with respect to the overall user time taken by the execution), 
cycles, instructions, cycles per instruction (CPI), and the module or framework each function belongs to (i.e., 

EDDLL, ECVL, OpenMP, or Eigen). 

As for the inference, we conclude that it shares the same performance characteristics as the 
training. Note that the same functions appear in both Tables 3.7 and 3.8 with the same weight on 
the execution performance. For this reason, improving the performance of these functions has a 
direct impact on the overall execution time on both applications: training and inference. 

 

UC12 Classification Inference % Time Cycles Inst. CPI Module 

im2col 22.37% 447.57 G 594.89 G 0.75 EDDLL 

get_pixel 10.78% 211.22 G 166.96 G 1.27 EDDLL 

func@0x18810 6.98% 138.51 G 6.92 G 20.03 OMP 

Eigen::internal::gebp_kernel 6.48% 120.77 G 329.07 G 0.37 EDDLL 

Eigen::internal::blas_data_mapper 46.62% 918.06 G 1.10 T 0.84 EDDLL 

func@0x189a0 2.66% 53.08 G 2.43 G 21.89 OMP 

cpu_mpool2D._omp_fn.0 0.85% 16.98 G 42.65 G 0.40 EDDLL 

ecvl::RearrangeChannels 0.76% 14.76 G 31.23 G 0.47 ECVL 

cpu_relu._omp_fn.0 0.72% 14.47 G 2.24 G 6.46 EDDLL 

cpu_conv2D._omp_fn.0 0.67% 13.25 G 1.56 G 8.52 EDDLL 

func@0x74b90 0.42% 8.42 G 10.74 G 0.78 EDDLL 

decode_mcu 0.15% 2.95 G 7.60 G 0.39 ECVL 

cpu_conv2D 0.12% 2.39 G 2.74 G 0.87 EDDLL 

jpeg_idct_islow 0.12% 2.30 G 6.88 G 0.33 ECVL 

cpu_copy._omp_fn.1 0.08% 1.63 G 65.00 M 25.08 EDDLL 

fast_randn 0.07% 1.31 G 3.93 G 0.33 EDDLL 

Table 3.8. Profile summary of the most time-consuming functions for the UC12 Classification (inference of 
200 samples) execution on an Intel Xeon node. For each function, the table displays user time percentage 

(with respect to the overall user time taken by the execution), cycles, instructions, cycles per instruction (CPI), 
and the module or framework each function belongs to (i.e., EDDLL, ECVL, OpenMP, or Eigen). 



 D2.3: EDDLL Hardware algorithms and adaptation to HPC 

 

GA-No 825111 Page 25 of 52 
 

3.2.3 Performance results on IBM Power9 nodes 

For the sake of completeness, we have reproduced the same experiments on a different HPC 
infrastructure (Power9 architecture) both for CPU and GPU executions of the CPU-Optimized 
EDDLL (Table 3.9). Generally speaking, the peak performance is similar to that obtained on the 
Intel Xeon Platinum. However, executions of the Intel platform have slightly better execution times; 
that is, 1,3x faster on average using the same number of threads. 

UC12 Classification Training 

Batch size 

1 2 4 8 12 24 48 

Threads 

1 2547.1 2451.4 2361.1 2325.2 2229.7 2211.5 2210.7 

2 2484.3 1348.9 1258.2 1226.2 1169.5 1157.9 1148.9 

4 2492.1 1329.7 695.6 663.7 629.4 618.8 610.4 

24 2527.5 1349.2 714.9 428.7 286.8 193.7 179.0 

48 2586.0 1377.0 728.6 405.8 287.0 190.5 175.4 

90 2763.4 1460.7 762.0 419.2 295.1 194.3 168.1 

160 3145.1 1657.8 825.9 459.4 317.8 210.6 171.4 

UC12 Classification Inference 

Batch size 

1 2 4 8 12 24 48 

Threads 

1 453.7 445.2 441.2 439.9 422.5 420.4 421.1 

2 450.5 238.0 231.2 230.2 221.7 220.2 220.3 

4 449.6 238.2 126.5 124.9 119.5 119.0 118.5 

24 457.2 239.7 130.8 76.0 55.3 39.9 38.1 

48 454.7 240.5 129.7 75.7 54.5 40.2 39.6 

90 463.4 245.1 130.6 74.4 54.4 38.0 35.4 

160 476.4 248.7 134.1 77.2 54.8 38.1 35.0 

Table 3.9. Time performance (in seconds) of the CPU-optimized EDDLL, executing the UC12 Classification 
(training 200 samples for 2 epochs, inference of 200 samples, respectively) on a Power9 node, varying the 

number of threads and the input batch size. 
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Moreover, Table 3.10 presents a succinct summary of the performance results obtained for the 
execution of the UC12 (training) running on GPU. The results show that GPUs are indeed quite 
efficient performing the matrix operations performed at the core of the EDDLL training routines. 
Nonetheless, their performance reaches a plateau for the same reason the CPU-Optimized does 
not scale beyond 8 threads (i.e., sequential loading of the input samples). In fact, a deeper analysis 
using the NVIDIA profiler reveals a 4.47% average utilization of the GPU with no overlapping 
kernels on execution at all. 

UC12 Classification Training 

Batch size 

1 2 4 8 12 24 

GPUS 

1 86.91 142.33 96.57 72.62 61.89 61.86 

4 81.17 233.48 156.39 105.92 83.86 67.96 

Table 3.10. Time performance (measured in seconds) of the GPU baseline EDDLL, executing the UC12 
Classification (training 200 samples for 2 epochs) on a Power9 node (equipped with 4 NVIDIA V100 GPUs), 
varying the number of GPUs used and the input batch size. All executions were made using the default “low-
memory” profile and delay=1. See Section 4, Table 4.3, for a complete discussion on the GPU EDDLL results 

processing the full ISIC dataset for different memory profiles and delay values. 

 

3.3 Summary of the CPU adaptation and optimization 

In this section, we have presented a series of optimizations that effectively adapt the EDDLL to the 
HPC infrastructure when executed using regular CPUs. Compared to the baseline EDDLL, the 
optimized version achieves speedups ranging from 2.7x, using a single thread, to 47.3x using all the 
48 cores available on the Intel Xeon Platinum (Figure 3.4). Moreover, compared to the GPU 
executions on the Power9 using an NVIDIA Voltas 100, the optimized EDDLL is just 1.7x slower. 

 

 

Figure 3.4. Speedup obtained by the CPU-optimized version of the CPU-Optimized EDDLL (adapted for HPC 
hardware CPU), executing UC12 (training 200 samples for 2 epochs) on an Intel Xeon Platinum, compared to 

the baseline implementation. 
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4 Algorithm adaptation and optimizations for GPUs  

In this section we present the adaptations and optimizations for GPUs. EDDLL provides a hardware 
abstraction through the Tensor objects. Tensors are n-dimensional arrays that can be placed in 
different devices: CPU, GPU and FPGA. Therefore the different operations must be implemented 
considering the different properties of the hardware in charge. All these considerations are 
implemented in a Tensor level and are provided to the rest of the EDDLL objects. 

From this abstraction the EDDLL builds different objects that allow final users to define multiple 
neural network topologies. These different objects are mainly Layers and Nets. Layers define 
mathematical operations between Tensors and also the differentiation of those operations in order 
to allow error back propagation mechanism. Nets represent how the different Layers are 
interconnected in order to provide the desired functionality. 

From Layers to higher level objects the user does not mind where the tensors are placed and how 
the mathematical operations are carried out. Therefore, Layers define the operations using common 
programming functions abstracted from the final hardware implementation.  

The hardware specification is defined when the neural network is compiled by means of using a 
Computing Service object (CS_CPU, CS_GPU or CS_FPGA). The final user defines the network 
connections and optimization criteria independently of the hardware available and this computing 
service is the only difference. The user programming is completely agnostic to the hardware where 
the optimization is going to be executed. 

One common limitation when dealing with big neural network topologies is the amount of memory 
that require. This amount of memory used to be a major drawback when using hardware 
accelerators like GPUs and FPGAs. In such situations the most common solution is to use several 
of these hardware accelerators to split the memory requirements into different units implementing a 
parallelization mechanism. The most common way of parallelization is “data parallelism” where the 
neural network is replicated in all the devices but the data that goes through the network is split. 
Usually this data parallelism is accomplished by means of splitting the batch size by the number of 
available accelerators. 

 

Figure 4.1. Diagram depicting the parallel distribution of the input batches to the available accelerators. 

As mentioned before, the neural network is replicated in all the devices and this entails that the 
parameters of the neural network are replicated in the different devices. However, the network 
parameters should be the same in all the hardware accelerators in order to ensure that the 
mathematical operations involved are the same independently on the device that is finally executing 
them. This is straightforwardly accomplished by means of the synchronization of the neural network 
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parameters. This synchronization is time consuming since very big tensors (network parameters) 
have to be collected from the hardware accelerators to main memory (other communication 
alternatives can be also explored) and then aggregated and distributed back to the hardware 
accelerators. 

In order to speed up this mechanism EDDLL also proposes to perform a delayed synchronization 
with a parameter that controls the amount of delay. If this parameter is zero then we obtain a full 
synchronization, while larger than zero provides some kind of partial synchronization that speeds up 
significantly the whole process. Moreover, our experiments show that this delayed synchronization 
improves the generalization capabilities of the neural network since it adds some stochastic noise to 
the process. 

4.1 Description of the EDDLL adaptation to GPUs 

GPU accelerators can be selected in the process of building the neural network using the CS_GPU 
object.  This is the unique difference in the program that users must consider in order to select 
among the different accelerators. The network definition and training procedure is agnostic about 
the hardware accelerator selected. Therefore, in the building command the user can select the 
Computing Service associated to the GPUs accelerators: 

build(net, optimizer, {losses}, {metrics}, CS_GPU( params ) ); 

Where params are the following: 

 Binary vector selecting the available accelerators (mandatory) 

 Memory level requirements (optional, default=”full_mem”) 

 Delay synchronization parameter (optional, default=1) 

EDDLL allows the user to select among the available GPUS. For instance, in a system with 4 GPUs 
installed the user can specify to use only the first and third GPU by means of using a binary vector 
in the CS_GPU object: CS_GPU( {1,0,1,0} ) 

EDDLL checks whether the system actually has these 4 GPUs installed and selects only those 
activated by the user. Regarding the memory levels, GPUS used to have low memory with respect 
to the main computer memory. This GPU memory is a worth resource and EDDLL allows three 
different memory levels: 

 full_mem: EDDLL tries to get as much memory as possible to ensure fast processing. 

 mid_mem: EDDLL performs some memory saving with a low speed degradation. 

 low_mem: EDDLL performs a strong memory saving with a significant speed degradation. 

An example of a 2 GPUs system where both GPUs are selected with a “low_level” setup: CS_GPU( 
{1,1}, ”low_level” ) 

Finally, when using multiple GPUs we perform “data parallelism”. The neural network is replicated in 
all the GPUs but the data is split and distributed among them.  In this scenario we must ensure that 
GPUs have the same parameters of the network. To this end the GPUs synchronize the parameters 
every batch of data processed. This synchronization entails a significant overhead in time. 
Therefore, we propose to postpone this synchronization after some batches, being this value set by 
the parameter of delay synchronization.  

For instance, an example of a 2 GPUs system where both GPUs are selected with a “mid_level” 
setup and synchronized every 10 batches will be CS_GPU( {1,1}, 10, ”mid_level” ).  
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4.2 Performance results 

Two different experiments have been carried out in order to assess the performance of the GPUs 
accelerators regarding the different parameters involved.  

In the first experiment we deal with a classical problem (CIFAR10) that does not entail any special 
memory requirements (always full_mem). We build a VGG16 neural network, train with batch size 
100 and run a total of 50 epochs. The following Table 4.1 shows the total training time in minutes 
varying the number of GPUs and the delay parameter. 

GPUs Delay Time  

1 - 50 

2 1 49 

2 10 33 

2 100 31 

2 1000 31 

Table 4.1. Execution time (measured in seconds) for the CIFAR10 problem varying the delay and the number 
of GPUs used. 

In the second experiment we use a larger neural network topology and deal with the UC12 about 
skin classification. This experiment requires to take care of the amount of memory since the size of 
the images and the neural network topology are larger. The following Table 4.2 shows the time per 
epoch on the UC12 about skin classification. Each epoch comprises a total number of 19328 
samples. The table shows the results using 1 GPU varying the batch size and memory 
requirements. The time is measured in seconds for one epoch. 

 full mid low 

8 668.5 755.1 647.2 

16 - - 614.7 

32 - - 745.5 

Table 4.2. Execution time (measured in seconds) for the UC12 classification (training) using a single GPU 
RTX2080 and varying the batch size and the memory allocation strategy. 

The following Table 4.3 shows the performance results using a system with 2 GPUs, varying the 
batch size, memory requirements and delay synchronization parameters. The time is in seconds for 
one epoch. The void cells represent those setups that do not fit into memory. 

 

full mid low 

Delay 100 10 1 100 10 1 100 10 1 

batch=8 571.3 859.4 3119.1 616.8 1001.5 3291.9 616.0 966.4 3230.7 

batch=16 441.0 726.9 2286.7 477.4 767.8 2407.6 470.4 746.7 2404.8 

batch=32 - - - - - - 381.9 586.9 2634.1 

Table 4.3. Execution time (measured in seconds) for the UC12 classification (training) using two GPUs 
RTX2080 and varying the batch size, the delay, and the memory allocation strategy. 
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5 Algorithm adaptation and optimizations for FPGAs 

The design complexity of efficient kernels for FPGAs relies on the fact that the architecture is 
adapted to the algorithm. Instead, in GPUs and CPUs the algorithms adapt to the fixed architecture 
and there are programming models and libraries (e.g. CUDA, MKL,…) that are already optimized for 
those fixed architectures. Instead, in FPGAs the design is imposed by the algorithm and thus, the 
efficiency of the use of the resources in the FPGA may be compromised. In addition, design times 
are much larger when compared to CPUs and GPUs counterparts. The design flow for FPGAs 
necessarily passes through different steps (software emulation, hardware emulation, final hardware 
design) which requires higher compilation (synthesis and floorplan processes) times. Indeed, 
typically we can expect several hours of compilation time for a set of kernels implemented on a 
target FPGA device. Moreover, depending on the algorithms, the final outcome may be 
disappointing since the final design may not fit on the device. The previous higher complexity of 
FPGA designs, combined with the expected availability of stable versions of both the EDDLL and 
ECVL, and the necessary refactors of such libraries as they are designed from scratch, leads to a 
criticality in the support of FPGAs for both libraries.  

Another important aspect related to FPGA designs is the expected difference in performance for 
some specific kernel functions. It is well known that FPGAs are more energy efficient than CPUs 
and GPUs but their capabilities and capacities are much lower in some specific types of resources, 
e.g. FPU support. This leads to the necessity of tailoring and profiling the process of training neural 
networks in order to identify which kernel functions are frequent, which ones take more complexity 
and which ones should not be targeted to FPGAs. This profiling can be achieved with the EDDLL 
and ECVL when targeting other devices such as CPUs and GPUs. We target the CPU device for an 
analysis of frequencies of basic functions being used, thus steering the development of FPGA 
kernels for equivalent functions. 

We target OpenCL as the programming model for developing the interface between the CPU and 
the FPGAs in EDDLL (and ECVL; see Deliverable D3.3). Kernels in FPGAs are developed using 
OpenCL or C and synthesized with High-level Synthesis (HLS) tools. In the EDDLL, however, GPU 
kernels are coded with CUDA and target NVIDIA GPUs as they exhibit higher performance. As a 
consequence, we have had to develop a complementary tool, a testbed platform which also targets 
OpenCL kernels on GPUs. Using OpenCL for both devices allows us to reduce our development 
times with faster processes of profiling, test, and development of kernel functions. Once tested, 
kernels are easily ported to the EDDL/ECVL libraries with minor modifications, mainly in the 
interface. 

5.1 Native support for FPGAs in EDDLL  

The EDDLL offers an API to define neural networks and execute on several target devices. The 
core part of the library is the Tensor class. The Tensor interface is device independent, allowing for 
a strong decoupling between logic behavior of the algorithm and its hardware implementations. 

To abstract hardware devices EDDLL uses the concept of compute service designed and 
implemented at the core of the library, which can also be exploited with COMPSS to efficiently 
execute on different hardware resources. For the FPGA we have created a specific compute 
service. The text below illustrates how to specify in the EDDLL main file that the network model has 
to be executed in an FPGA.  

build(net,sgd(0.01, 0.9), {"soft_cross_entropy"},{"categorical_accuracy"}, CS_FPGA({1})); 

As we rely on the OpenCL API to implement host-to-FPGA communication, we extended the Tensor 
class to add a handle to the OpenCL buffer representing the tensor memory area in the device 
memory. As explained before, the FPGA implementation of the mentioned kernels is specified in 
OpenCL or C. The kernels take one or multiple buffers as input and output, along with any 
additional parameter. For each input or output buffer, a standard AXI port is generated to ease the 
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exploitation of parallelization opportunities. Scalar arguments are passed through a single AXI Lite 
interface, which is the same one used by the Xilinx runtime to launch kernels and query their status. 

Then, we extended the EDDLL compilation flow to support the integration with the Vitis toolflow, 
used to generate a bitstream containing all the kernels that could be simulated or flashed on the 
physical FPGA. Figure 5.1 shows how the support for FPGAs is implemented in the EDDLL.  

 

Figure 5.1. FPGA Integration Scheme. 

 
We illustrate the flow to support FPGAs  with an example. In particular, we show how to support 
tensor addition (Tensor::add()) functionality included in tensor_math.cpp. First of all, in the main 
function which is intended to support, is added the device selection by the cFPGA flag. The function 
“fpga_tensor_add(scA, A, scB, B, C, incC)”, marked in the green box, is the host program that 
determines the kernel launch on the FPGA. 
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Figure 5.2. eddl/src/tensor/tensor_math.cpp. 

 

File tensor_hls_op.cpp describes all the functions which are needed to initialize the device, the 
OpenCL context and CommandQueue, determine the bitstream path and select the active kernel on 
it. In addition, you can also find all host programs related to the file tensor functions of the previous 
figure. The bitstream generation method was described in the deliverable 5.1. The programming 
flow is based on creating the error and event variables, sending the parameters in the correct order 
to the kernel and launching the kernel task. 
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Figure 5.3: eddl/src/hardware/fpga/tensor_hls_op.cpp 

 

The SDAccel environment supports kernels expressed in OpenCL C, C/C++, and RTL 
(SystemVerilog, Verilog, or VHDL). You can use different kernel types in the same application. 
However, each kernel has specific requirements and coding styles that should be used. 

The communication interface with the kernel is based on the Xilinx AXI protocol. There are three 
types of AXI4 interfaces:  
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 AXI4—for high-performance memory-mapped requirements.  

 AXI4-Lite—for simple, low-throughput memory-mapped communication AXI4-Stream—for 
high-speed streaming data. 

All kernels require the following: 

 A single slave AXI4-Lite interface used to access control registers (to pass scalar arguments 
and to start/stop the kernel) 

 At least one of the following interfaces (can have both interfaces): 

o AXI4 master interface to communicate with global memory. 

o AXI4-Stream interface for transferring data between kernels or directly with the host. 

Figure 5.4 shows an example of the kernel used for the tensor add function. It should be noted that 
the kernel shown is not optimized. In this case, there are five scalar arguments, three start/stop port 
control for three data streams and one port “gmem” to receive all values of A, B  and C tensors.  

 

 

Figure 5.4: eddl/src/hardware/fpga/kernels/kernel_add.cpp 
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5.1.1 FPGA kernel design flow 

With the availability of our testbed platform and the specifications of the EDDL/ECVL libraries, we 
defined the following design flow for each target kernel for FPGAs: 

1. Identification of the kernel, which depends on the neural network and the use case 

2. Memory requirements profiling of the kernel as a function of the batch size and the dataset 
size 

3. Execution profiling (and instantiation frequency) of the kernel on different target devices, 
checking its criticality in the complete pipeline design of the training process 

4. Functional implementation of the kernel on FPGA in software emulation mode, checking its 
arguments and dimensioning of the algorithm. The kernel is embedded into the testbed 
platform to check whether the network using the kernel still converges (kernel functional 
validation) 

5. Hardware implementation of the kernel with hardware emulation. The kernel is implemented 
in hardware but tested in emulated form (for rapid exploration of validity of the 
implementation). Resources needed on the FPGA are evaluated. 

6. Actual hardware implementation and testing on the FPGA. The platform is hooked to the 
FPGA and the complete training process uses the kernel running on the FPGA. 
Convergence of the training process is checked. 

7. Area, performance profiling within the platform and potential optimization, looping with 
previous two steps (hardware emulation and hardware implementation). 

8. Final adaptation to EDDLL and ECVL libraries. This process implies argument’s adaptation 
using the same programming models and tools (OpenCL and OpenCV). 

9. Final validation on EDDLL and ECVL libraries. 

5.1.2 FPGA emulation mode 

One important aspect when designing multiple kernels is that they cannot be optimized or tested at 
once. Indeed, it is quite complex to get a kernel validated in isolation as the implications on the 
training process (with multiple instances of many other kernels being executed) may be unexpected. 
For this reason, we have developed an emulated mode for the kernels which allows us to embed a 
kernel supposedly running on the FPGAs to actually being run on the CPU in an emulated mode. All 
the tensors are located on the FPGA but the kernel is executed on the CPU. Therefore, the tensors 
are firstly copied back to CPU memory, then the kernel implemented on CPU is run and after that 
the output tensors are copied back to the FPGA memory.  

With this mode we can easily code most of the kernels in emulated mode and focus on a specific 
kernel optimization and test it using the complete training process, thus not waiting to have all the 
kernels implemented on FPGA. Figure 5.5 shows the case for one such kernel in emulated mode in 
the testbed platform. 

Indeed, the emulated mode allows us also to determine which kernels do not deserve being 
implemented on FPGAs and therefore, being launched on CPU. This is the case, for instance, of the 
initialization function kernel which only takes place once during the complete training process and 
therefore, make no sense to waste FPGA resources for its implementation as the impact on 
execution time is negligible. With this emulated mode we allow the EDDLL and ECVL libraries to 
support those optimizations without needing any modification. 
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Figure 5.5: Example of FPGA kernel call in the Testbed platform  

5.1.3 Data quantization, reduced precision, and kernel fusion 

One critical aspect with FPGA designs is that they do not natively support FPU units or their support 
is limited. Indeed, FPGAs are well suited for fixed point integer operations or even lower integer 
formats. The EDDLL and ECVL libraries are not, in principle, designed for such support. Indeed, it is 
not the goal of the libraries (as they target the training process). However, within the project, we will 
explore the support at least on inference processes and with specific well-defined scenarios. The 
testbed platform allows us to decouple our needs from the expected development of the 
EDDL/ECVL libraries within the project. Indeed, the platform already analyses the impact of 
precision reduction on the generated models on the accuracy obtained.  

Additionally, the platform allows us to explore multi-function kernels or combined kernels which can 
be proven to be efficiently implemented on FPGAs. One case is the combination of the matrix 
multiplication operation and the matrix addition operation, both are used in dense layers and run in 
sequential mode to multiply activations with weights and then to add bias to the output. We can 
explore designs with a unified kernel which performs both actions. With the testbed we can explore 
these venues without impacting unnecessarily on the design process of EDDLL and ECVL. Notice 
that kernel fusion allows also to reduce memory pressure since temporal tensors are avoided. 

5.2 Functional hardware support for a complete training in FPGA 

We have implemented all the kernels required to execute the training batch example provided in the 
EDDLL. This example uses an input layer with 784 size, three Dense layers with “ReLu” activation 
and 1024 size. Finally, the network has a dense layer with 10 classes and “Softmax” activation.  The 
model is built for “sdg” optimizer, “soft_cross_entropy” losses and “categorical_accuracy” for 
metrics. The dataset has one epoch and 100 images for batch size. Table 5.1 lists the kernels we 
have implemented to run the eddl_train_batch example in FPGA. Functions not supported for FPGA 
are executed on CPU. Each function is associated with a specific kernel. 

FUNCTION ASSOCIATED KERNEL 

sum2D_rowwise kernel_sum2D_rowwise.cpp 

reduce_sum2D reduce_sum2D.cpp 

add kernel_add.cpp 
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sum kernel_total_sum.cpp 

ReLu multitensor_op.cpp 

D_Relu relu_soft_d.cpp 

Softmax multitensor_op.cpp 

fill_ kernel_core.cpp 

accuracy kernel_accuracy.cpp 

cent kernel_cent.cpp 

Table 5.1 Functions and associated kernels. 

Table 5.2 shows the resources required by each kernel. For the FPGA implementation we use the 
ALVEO U200 board and the design flow described in Deliverable D5.1.  

KERNEL FF LUT DSP BRAM URAM 

kernel_sum2D_rowwise 2705 2167 6 4 0 

reduce_sum2D 332 552 0 0 0 

kernel_add 2755 2105 5 2 0 

kernel_total_sum 1867 1965 2 4 0 

multitensor_op 5010 5438 28 2 0 

relu_soft_d 4005 2996 11 10 0 

kernel_core 904 1116 0 2 0 

kernel_accuracy 2304 2349 0 2 0 

kernel_cent 9465 4651 71 4 0 

Table 5.2 FPGA reources for each kernel. 
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The bitstream includes all kernels and consumes only 2% DPS blocks, 16% LUTs, 12% FF and 
22% RAMs. This means that there is a significant room for improvement since the available 
resources can be used to increase the data-level parallelism. Figure 5.6 shows how each kernel is 
interconnected within the FPGA using the available logic and memories. Figure 5.7 depicts how the 
resources are allocated to specific FPGA regions. Note that in the ALVEO U200 we have different 
logic regions (e.g slr0 and slr1 depicted in the plot). Each region has access to a different bank of 
the DDR memory. Thus, using several logical regions is useful to improve the memory bandwidth. 

 

 

Figure 5.6. Block diagram eddl_train_batch bitstream. 
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Figure 5.7. Layout for eddl_train_batch bitstream in Alveo U200. 

After generating the bitstream and compiling the example for the FPGA device, the network training 
is launched, achieving the results shown in Table 5.3. As shown in this table the FPGA 
implementation achieves results that are very similar to the ones provided by the CPU. Differences 
can be explained by the inherent randomness of the training process and by the different treatment 
of floating point operations in CPU and FPGA.  

DEVICE SOFT_CROSS_ENTROPY. ACCURACY 

CPU 0.379 0.934 

FPGA 0.367 0.930 

Table 5.3: Accuracy results CPU/FPGA. 

Finally, we show the speed comparison between function calls for CPU and for FPGA. The default 
FPGA implementation provides significantly worse results that the CPU. However, this is expected 
since this FPGA implementation is the result of blindly applying HLS to the CPU kernels code. As 
we show later when FPGA kernels are optimized we can improve the performance by several 
orders of magnitude.  
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FUNCTION CPU [s/call] FPGA [s/call] 

sum2D_rowwise 4,62E-05 0,0127531 

reduce_sum2D 2,62E-05 1,64E-04 

add 0,000231415 0,0358812 

sum 1,12E-06 3,59E-04 

ReLu 4,85E-05 5,35E-04 

D_ReLu 0,000106174 0,0164061 

Softmax 1,10E-05 2,38E-04 

fill_ 5,30E-04 9,70E-04 

accuracy 4,19E-06 0,000411316 

cent 9,04E-05 0,0033001 

Table 5.4: Results comparison in EDDLL train batch CPU/FPGA. 

Figure 5.8 shows the comparison of the time required by CPU and FPGA kernels exercised in the 
basic train batch example. Note that we have not included the matrix multiplication kernel since the 
non-optimized version of this kernel in the FPGA lasts too much. In this experiment all matmult 
operations are performed in the CPU which requires for the case of the FPGA to move tensors 
between devices. The goal of this exercise was twofold. First, we want to show that the EDDLL 
functionality in the FPGA is correct. Second, we want to quantify what other kernels, in addition to 
the matmults, will need to be optimized not to penalize training process execution times in the 
FPGA.  

As we can observe in Figure 5.8 sum2D_rowise, add, and D_ReLu kernels do not perform well 
when they are not optimized while for the rest of the kernels the differences between CPU and non-
optimized FPGAs are negligible. 
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Figure 5.8: Results comparison in EDDLL train batch CPU/FPGA. 

 

5.3 Profiling of training process 

To get a full picture of the time-consuming kernels in other several neural networks models, we 
have profiled the complete function set implemented for CPUs in the EDDLL. Using this profiling 
extension we ran the following available examples of the EDDLL library: 

 CIFAR dataset with convolutional network 

 MNIST dataset with autoencoder 

 CIFAR dataset with ResNet network 

 CIFAR dataset with VGG16 network 

 CIFAR VGG16 network with group normalization 

 Segmentation process (drive database) 

 MNIST dataset with Recurrent neural network 

Notice that complexities vary between the chosen examples. 

Figure 5.9 shows the breakdown of functions for each example, showing the involved time for each 
function. Notice we show accumulated running time for each function. 
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Figure 5.9: Execution time per kernel breakdown for several network models 

We can see for all the cases, mainly, two important conclusions. First, some functions are seldom 
used and therefore have a negligible impact on the execution time in the training process. This is 
the case of functions rand_signed_uniform and rand_normal. Indeed, all the initialization functions 
are called only once per training process and therefore will always have no impact. We can consider 
that when targeting FPGAs those initialization processes will be run on the CPU and the initialized 
tensors will then be transferred to the FPGA. 



 D2.3: EDDLL Hardware algorithms and adaptation to HPC 

 

GA-No 825111 Page 43 of 52 
 

The second observation is the significant impact of the convolutional process and the matrix 
multiplication functions. Indeed, within the convolutional functions profiled there are embedded 
further matrix multiplications. Functions such as im2col, conv2d, conv2d_grad, and conv2d_back, 
need an efficient implementation on FPGAs. The same applies for mult2D. 

Other types of neural networks use batch normalization. This is a heavy process as shown in the 
Figure 5.9. Indeed, the batch normalization process is distributed over many functions. Some 
functions perform permutations to the input activations (permute_channels_last, 
permute_channels_first, permute_batch_last, permute_batch_first) and others perform the 
arithmetic operations needed (add_, mult_, sqr_, sqrt_, el_div, el_mult). 

Other aspects we can see from the profiling is that maxpooling (mpool2d, mpoool2d_back) and 
average pooling functions do not have a significant impact on the execution time. Also, some 
functions in EDDLL are used for data augmentation (e.g. single_crop, single_crop_scale, crop, 
crop_scale_random). Those functions are expected to be replaced by the ECVL library support for 
which we are already providing FPGA support. 

Finally, activation functions (relu, d_relu, sigmoid, d_sigmoid) have a lower impact on performance 
but not negligible. Those functions will need to be implemented on FPGAs. Notice that the most 
frequently used activation function is RELU. 

Knowing the profiling of functions for a particular training and/or inference process is important 
when targeting FPGAs. In particular, knowing which functions are called (and which ones not) 
enables efficient implementation on the FPGA device. Indeed, not all the functions implemented in 
EDDLL for the CPU can be fit on a single FPGA at the same time. Therefore, it is needed to know in 
advance the set of functions that are needed for a specific training or inference process. With this 
information the FPGA can be programmed and configured with the specific set of functions needed. 

Moreover, in the case of a complex training and/or inference process where too many functions are 
needed at the same time, we need to carefully select which functions will be supported in FPGA and 
which ones will be offloaded to the CPU (or GPU). This will be a needed tradeoff in case of complex 
designs. 

 

Figure 5.10: Memory requirements of different neural network examples 

Another important aspect when targeting FPGAs is the required amount of memory needed. 
FPGAs, unfortunately, have a limited memory space and may compromise their performance and 
effectiveness. Therefore, we need to argument memory requirements and memory bounds for our 
designs. We have profiled the previous examples with the required memory instantiated during the 
training process. Figure 5.10 shows the buffer requirements for each example. As can be seen, the 
most complex example in terms of memory requirements is drive, which requires 2.8GB. This may 



 D2.3: EDDLL Hardware algorithms and adaptation to HPC 

 

GA-No 825111 Page 44 of 52 
 

limit the applicability of FPGA kernels as tensors may not all fit on the FPGA. Indeed, the FPGA will 
need to store most of the tensors off-chip (in its associated DDR), thus potentially impacting 
performance. 

Notice also that the memory requirements depend on the neural network design but mostly on the 
batch size. For the drive example, which took the highest memory needs, the batch size was set to 
2 items only. If we double the batch size, the memory requirements increase to 4,5GB, which may 
challenge FPGA design. If due to memory limitations the model cannot be completely trained and/or 
inferred on the FPGA we would need both FPGA and CPU to cooperate. 

5.4 FPGA kernels optimizations 

After the identification of the most relevant kernels it is time to optimize their execution in the FPGA. 
In this section we show and compare the performance of two highly optimized implementations of 
matrix multiplications in FPGA. In particular, we have ported GEMX to the EDDLL, an efficient 
implementation of matrix multiplications and related functionalities provided by Xilinx, and 
GEMM_HLS an open-source implementation of matrix operations developed by ETH Zurich 
(https://github.com/spcl/gemm_hls) to test its functionality.  

The first thing we have observed is that both implementations impose certain limitations to the size 
of the matrix taken as input. Thus, to use such implementations tensors will have to be padded with 
zeros to support these FPGA overlays without imposing limitations to the sizes of the input data. 

We have executed both overlays in the ALVEO U200 FPGA board for several matrix sizes. Figure 
5.11 shows a comparison of the execution time. As shown in the plot both overlays produce very 
similar results. However, GEMX is able to achieve higher peak performance numbers (lower 
execution times). In particular, we achieve a peak performance of 127,22 and 210,3 GFLOPS for 
GEMM_HLS and GEMX, respectively. Note that this is up to 200X faster than the non-optimized 
version of the matrix multiplication. For the EDDLL running on our server (i7-7800X CPU @ 
3.50GHz) we get 138.85 GFLOPS when using multiple threads. Note that in the case of the FPGA 
we can also host more than one GEMX and GEMM_HLS overlay allowing to achieve higher 
performance.    

 

 

Figure 5.11: GEMX and GEMM_HLS performance comparison for different matrix sizes 

 

 

https://github.com/spcl/gemm_hls
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6 FPGA dataflow accelerator for efficient inference  

In order to improve the inference performance of deep learning applications, HPC infrastructures will 
rely on FPGA based boards as hardware accelerators. The challenge is to take advantage of the 
acceleration brought by FPGA boards without increasing in a prohibitive way the time-to-model-in-
production (TTMIP). 

The objective of this flow is to easily generate a hardware implementation of the inference code of a 
Deep Neural Network (DNN). This code will run efficiently on a FPGA device. The proposed flow 
intends to be as automatized as possible in order to reduce the need for Neural Network experts. 

The flow will rely on the following artefacts: 

 The EDDLL library, mainly used for DNN design and training. 

 The DNeuro CEA accelerator. 

 The N2D2 CEA framework for inference code generation using the DNeuro accelerator. 

Interworking between the EDDLL and the N2D2 framework will rely on the ONNX exchange format. 

 

 

Figure 6.1. CEA N2D2 framework overview for inference code generation. 

6.1 Accelerator DNeuro 

The aim of the N2D2/DNeuro flow is, for a given Neural Network, to automatically generate an 
inference IP that will be directly loaded and executed on a targeted FPGA. The IP is built using the 
N2D2 framework by assembling optimized pre-designed IP blocks corresponding to various NN 
computation layers. 

6.1.1 Inference IP generation flow 

The N2D2 CEA framework will be responsible to generate the DNeuro-based inference IP of a 
given Neural Network. The IP generation flow is as follows: 

1. Loading of a pre-trained ONNX model; 

2. Accuracy validation of the ONNX model in inference (Inference); 

3. Calibration and quantization of the DNN (Calibration); 

4. Accuracy validation of the quantized model in inference (Quantized inference); 
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5. Generation of the top-level RTL instantiating the DNeuro HW blocs and generation of test 
vectors from the DNN dataset (DNeuro export); 

6. Accuracy validation of the DNN implemented with DNeuro HW using a bit-accurate emulator 
(DNeuro emulator); 

7. Neural network performance tuning. 

The full generation flow process with the above steps is summarized in Figure 6.2. 

 

Figure 6.2. N2D2 / DNeuro generation flow. 

6.1.2 Calibration and quantization of the DNN 

The N2D2 framework will perform a post-training 8-bits quantization of the input Neural Network. 
The quantization uses a calibration process to determine the optimal range of activations in the 
different layers of the network, based on samples from the dataset. 

6.1.3 DNeuro export: HW blocs library building 

The N2D2 framework will build a library of all the blocs (layers) required by the input Neural 
Network. The library is a subset of the collection of optimized pre-designed HW blocs that can be 
linked one to another. The DNeuro accelerator mainly targets Convolutional Neural Networks 
(CNNs). Figure 6.3 shows a list of the HW blocs on which the accelerator can rely on. 

 

Figure 6.3. DNeuro working principle and RTL library modules summarized. 
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In Figure 6.4 we present the complete list of layers supported by DNeuro. 

 

 

Figure 6.4. Complete list of layers supported by DNeuro. 

 

Likewise, Figure 6.5 shows all the activation functions supported. 

 

 

Figure 6.5. Activation functions supported 

 

6.1.4 DNeuro export: neural network dataflow building 

Using the library of needed HW blocks, N2D2 flow will create the Neural Network dataflow that 
implements its inference. The output of this step is a “top RTL” that can be directly synthesized by 
FPGA tooling. The IP generated here corresponds to an implementation that requires the minimum 
amount of FPGA resources. Most of the NN topologies accepted here are those used in CNN. 
Below is a list of those topologies, on an Arria 10 target: 
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Table 6.1. Arria 10 neural networks compatibility table with DNeuro v2, in terms of memory requirements 

. 

6.2 Neural network performance tuning 

This is the last step of the flow. Based on the Neural Network size and the FPGA capabilities, this 
step will try to increase the throughput and decrease the latency of the generated Neural Network 
by adding computation parallelism at the layer level. Knowing that a Neural Network processes 
received data through a pipeline represented by its layers, the overall system performance is 
constrained in two ways: 

 Latency represented by the sum of: 

o The time to acquire the required data needed to start computation, 

o The time for data to go through all the Neural Network layers in sequence. 

 Throughput: inverse of the time spent in the slowest layer. 

Performance increase will be achieved by adding parallelism at the layer level. The N2D2 
framework will perform the following actions: 

 Scan the graph of the Neural Network dataflow in order to identify the slowest layer; 

 Determine the amount of FPGA resources needed to increase the parallelism of the layer by 
one factor; 

 If there are enough FPGA resources, it performs the transformation of the HW block to 
increase its parallelism by one factor. 

The process is repeated until either there are no enough remaining FPGA resources to increase the 
parallelism by one factor or, the maximum parallelism has been reached. Each layer receives 
several input channels, applies on them a computation kernel and generates data on a certain 
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amount of output channels. The HW block representing the layer that has been identified as a 
candidate for parallelization will be transformed in order to: 

 Simultaneously acquire data on several input channels, 

 Perform in parallel computations on independent input channels, 

 Simultaneously produce data on several output channels. 

Doing so will reduce the overhead time to get data available for computation and reduces the delay 
needed to make data available to the subsequent layers. Moreover, the level of parallelism and thus 
the FPGA resource usage can be configured in order to find the best trade-off between latency and 
resource usage, as shown in Figure 6.6. 

 

Figure 6.6. DSP and memory usage can be automatically adjusted to achieve the desired latency. 

 

6.3 Neural network topology adaptation and validation 

The proposed generic dataflow accelerator relies on a collection of optimized hardware blocks 
(computational layers). Therefore, a Neural Network that has been designed without this generic 
dataflow accelerator in mind can make use of kernels that are not directly available. Adding the 
support of the missing layer by the generic accelerator may result in a significant design effort, 
incompatible with the TTMIP. A less costly approach consists in reworking the Neural Network 
architecture in order to use an alternative to the missing layer. Such a rework will require retraining 
the network. Standard topologies like MobileNet, ResNet or VGG will be supported, albeit without 
the Softmax layer, which is not required for classification during inference and can be replaced by a 
simple MAX operation. 

The proposed flow will be first validated on known Neural Networks, available as examples with the 
EDDLL like the EDDLL MNIST example and MobileNet and/or ResNet topologies. Then the flow will 
be checked against one of the Neural Network designed within the project. Even if the definitive 
use-case has not been selected yet it appears that the “Skin cancer melanoma detection” (UC12) 
could be a good candidate. 
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6.4 Perspective: HW acceleration of huge neural network 

The proposed generic dataflow accelerator allows the generation of the inference code of a Neural 
Network for a FPGA target. The execution efficiency of the code is directly linked to the level of 
parallelism achieved during the IP process generation. However, the level of achievable parallelism 
is constrained by the size of the Neural Network and the FPGA capabilities. A way to allow a huge 
Neural Networks to get benefit of the generic dataflow acceleration is to split the generated IP over 
several FPGA devices connected together through high-speed links. The general process CEA 
intends to set up is as follows: 

 Completely unfold the Neural Network IP, exposing the theoretical maximum demand of 
FPGA resources on a per layer basis or not. 

 Reduce the parallelism to an acceptable level, based on a maximum amount of FPGA 
resources available, on a per-layer basis, or if possible, in a more flexible way. 

 Perform a logic partitioning of the network among the different available FPGAs on the target 
platform. 

 Implement the result by adding the necessary communication resources between FPGAs. 

The last two steps are currently under active research and development by the CEA team 
involved in WP5. This work involves mathematical modeling for the problem of neural network 
partitioning. As DNeuro provides full control on resource utilization and communication between 
layers, the partitioning model will allow partitioning by optimizing two possible criteria: the 
minimization of latency and the maximization of resource usage. 

 

7 Distributed pyEDDLL on HPC infrastructures 

This section describes the parallelization of the pyEDDLL training operation in the Marenostrum 
HPC infrastructure owned by the DeepHealth partner BSC. We refer the interested reader to check 
deliverables D2.1 “EDDLL library” (May 2020) for a complete description of the parallelization 
strategy for the pyEDDLL training operation, and D5.4 “The runtime system for DeepHealth 
libraries” (March 2020) for the modifications included in the COMPSs runtime to support the 
execution.   

In the next section we briefly describe the parallel structure of the pyEDDLL training operation and 
its execution on the Marenostrum supercomputer, and provides a first evaluation from a 
performance and accuracy point of view.  

7.1 Parallelization approach  

The parallelism exposed by the pyEDDLL training operation is shown in Figure 7.1, in the form of a 
Task Dependency Graph (TDG). Each node of the TDG represents a COMPSs task that can be 
distributed among the different computing nodes, in this case, Marenostrum nodes. The edges of 
the TDG represent the data transfers and synchronization between tasks, defining an execution 
order.   

The deep neural network model is built in parallel on each of the available distributed computing 
resources (build COMPSs tasks). As soon as the building process is completed, the training 
process starts. The parallelization strategy follows a synchronous training approach: each 
train_bach COMPSs task operates in parallel over a subset of the dataset (divided into a given 
number of batches). When all tasks complete, the computed (partial) weights are collected in the 
master node (update_gradients task). This process is repeated for a given number of epochs (see 
deliverable D2.1 “EDDLL library” for further details).  

 



 D2.3: EDDLL Hardware algorithms and adaptation to HPC 

 

GA-No 825111 Page 51 of 52 
 

 

Figure 7.1. Task-level parallelism of the pyEDDLL training operations. 

 

7.2 Supporting Marenostrum with COMPSs  

One of the main features of the COMPSs framework is that it abstracts the parallel execution model 
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail 
that would tie them to a particular platform, boosting portability among diverse infrastructures and so 
enabling its execution in both a classical HPC environment and a cloud-based environment.  

To do so, COMPSs abstracts the underlying infrastructure by creating a set of execution 
environments, named COMPSs workers, in which COMPSs tasks execute. Internally, the COMPSs 
runtime implements different adapters to support the execution of COMPSs tasks in a given 
resource. Through a set of configuration files, the user specifies the available computing resources, 
which may reside in a cluster or in the cloud.  

The COMPSs runtime is already supported in the Marenostrum supercomputer as a loadable 
module, in which the COMPSs workers are executed in the different Marenostrum computing 
nodes, each  equipped with 2 Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz, 96 
GB of main memory and 200 GB local SSD available as temporary storage during jobs. The 
COMPSs runtime is then responsible for distributing the parallel version of the pyEDDLL training 
operation as described above. 

7.3 Preliminary evaluation  

We have conducted a preliminary set of experiments in the Marenostrum supercomputer to evaluate 
the performance speedup of the distributed training operation when the trained accuracy is above 
90%. Concretely, the experimental setup is the following:  

 The MNIST training dataset (http://yann.lecun.com/exdb/mnist/) composed of 60000 
images.  

 A DNN topology with the following configuration: 784 x 1024 x 1024 x 1024 x 10, linear 
rectified activation function for hidden layers and softmax for output layer.  

 The number of COMPSs Workers ranging from 1 (corresponding to sequential execution) to 
32. 

 The number of batches has been set up equal to the number of COMPSs workers. 

Figure 7.2 shows the execution time (in seconds) and the performance speedup (Y-axis) of the 
distributed pyEDDLL training operation when ranging the number of COMPSs workers from 1 to 32 
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(X-axis). There is a nearly linear speed-up when the number of workers ranges from 2 to 8. 
However, this trend does not continue for 16 and 32 workers. This is mainly due to the tasks 
granularity, that decreases and does not compensate the high communications costs, nor the 
parameter aggregation that requires synchronization. The accuracy achieved in all experiments is 
94.01%, independently of the distribution strategy.  

 

Figure 7.2. Preliminary evaluation of the distributed pyEDDLL training in Marenostrum. 

 

8 Conclusions and future work 

This deliverable reports the activities performed so far until month M17 related to task T2.3 “EDDLL 
adaptation to heterogeneous HPC hardware”. The goal of this task is to deploy, analyze, and decide 
which are the most suitable strategies to use when porting the EDDLL to heterogeneous HPC 
platforms technologies, mainly focusing on CPUs, GPUs and FPGAs. The current deliverable will be 
updated in the beginning of the third year of the project. 

Currently, most of the focus has been put on the development, testing, and characterization of 
EDDLL baseline. This way, much of the work has been put on developing a robust baseline and 
characterizing the performance of the library. This baseline version has been tested and profiled on 
different heterogeneous systems. As a result, the main bottlenecks of the EDDLL have been 
identified, along with the underlying causes of the performance loss and low exploitation of the 
available hardware resources. 

For the CPU implementation, we have proposed and implemented algorithm optimizations that lead 
to significant improvements of the library performance (i.e. 47.3x compared to the EDDLL baseline; 
only 1.7x slower than the executions on the V100 GPU). At the same time, we provide a 
comprehensive characterization of the performance of the CPU-Optimized version of different HPC 
platforms. As a byproduct of this analysis, we have identified new bottlenecks and inefficiencies that 
will be addressed in the future in this task effort. 

The profiling in terms of performance, accuracy, and power for the algorithms already adapted to 
GPUs is an on-going effort. In addition to the results presented in this deliverable, additional GPU 
performance profiles (decoupled from the EDDLL) are being performed, as well as profiling 
executions for the GPU version of the EDDLL.  

Likewise, the adaptation of the main EEDLL algorithms to FPGAs is also an on-going effort. So far, 
the FPGA components to be ported have been successfully identified, and initial implementations of 
some the kernels have been presented. In the next few months we will focus our attention on the 
FPGA-based porting of the EDDLL targeting different platforms. 

Another focus of our work will be the deployment of the heterogenous implementations of the 
EDDLL algorithms in HPC infrastructures, giving COMPSs the responsibility of managing and 
distributing the computation across the heterogeneous devices available in the system, including 
CPUs, GPUs, FPGAs or accelerators like DNeuro. 

The advances and results of this work will be reported in the deliverable D2.4 “EDDLL Hardware 
algorithms and adaptation to HPC (II)” in month 31. 


