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Executive summary

This deliverable (D2.1) consists in the European Distributed Deep Learning Library (EDDL1 Library), which is
a software component and its documentation, publicly available in a repository on GitHub since M10 (October
2019). This document presents and describes (i) the work carried out in tasks T2.1, T2.2 and T2.6 of WP2
since M3 to M17, and (ii) the library and its documentation.

In its current status, the EDDL library covers 99% of the functionalities needed by the 7 platforms to im-
plement and deploy the 14 use cases. A clarification is important at this point: not all pilot use cases will be
implemented in all the platforms. Each use case is paired with at least one software platform as it is described
in D1.1.

We would like to highlight that the documentation of the software components EDDL and PyEDDL is not
going to be included in this document due to its extension (it is neither effective nor operative). Documentation
of software, which also includes the API reference used by developers, is a living web document, any snapshot
becomes obsolete immediately. Hence, the public repository where software and documentation are available
will be referenced in this document.

This document is organised as follows:

Section 1 “Introduction” summarises and reformulates the objectives of the EDDL, and puts in
context the tasks T2.1 and T2.2 for EDDL and T2.6 for PyEDDL with
respect to other tasks of the project.

Section 2 “Global Overview” positions the EDDL (including the PyEDDL) within the DeepHealth
toolkit.

Section 3 “Development” explains the current status of the library design and implementation, in-
cluding aspects like configuration, documentation, use of standard for-
mats to import/export, and more details.

Section 4 “Conclusions” gives a perceptual evaluation of the current development.

A final note regarding the impact of the COVID-19 pandemic on the activities relevant to this report. For-
tunately, the pandemic has only had minor effects on these activities, mostly in terms of slightly reduced
productivity due to the total absence of face-to-face interaction between collaborators and also as individuals
work to manage personal situations caused by the imposed restrictions (e.g., closed schools and day cares).
Nevertheless, the consortium has still been able to effectively organise its efforts and deliver these results
according to schedule.

1From now on we will use the acronym EDDL because it is easier to pronounce.
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1 Introduction

This document is about the design and implementation of the EDDL library including the Python wrapper
(PyEDDL) being carried out in tasks T2.1, T2.2 and T2.6. This introductory section has the purpose of showing
the relationships of EDDL and PyEDDL with other components of the DeepHealth toolkit, and the relationships
of tasks T2.1, T2.2 and T2.6 with other tasks of the project, including tasks of other work packages.

Figure 1 illustrates the relationships between D2.1 and other deliverables. These relationships imply de-
pendencies of other components of the project on the EDDL. Dependencies are correctly defined and solved
by means of collaborations between the teams in charge of the corresponding tasks. Figure 1 also shows the
periods while tasks T2.1, T2.2 and T2.6 are active.

Figure 1: Context of deliverable D2.1 (a draft version of D2.2 due to M31). D2.1 includes the work carried out in tasks T2.1,
T2.2 and T2.6 up to M17. Relationships with other deliverables are shown in this figure to illustrate the collaborative work.

1.1 Objectives of the EDDL library including the Python wrapper PyEDDL

The EDDL library is one of the outcomes of the DeepHealth project, that in addition to be exploited within the
project when used in the 14 pilot use cases, also pursues to be used beyond the DeepHealth project and in
other sectors than the Health sector. Let us summarise the objectives of this deliverable D2.1 and the related
tasks T2.1, T2.2 and T2.6 in two ambitious goals:
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1. Cover most used Deep Learning functionalities in the Health sector, in particular the required in the 14
pilot use cases of the DeepHealth project.

2. Become a widely used library:

• Easy to be used and integrated by developers.

• Easy to be installed and configured by Data / Computer scientists –we have to make it a ready-to-
use software just after an easy installation.

• Include most of the DL functionalities commonly available in other DL toolkits in addition to the
functionalities needed within the DeepHealth project.

In order to achieve this second goal EDDL+PyEDDL must be presented and published as a General
Purpose Library. As some of the examples included in the package show, EDDL+PyEDDL is already a
general purpose software that can be used to design, train, evaluate and put in production any network
topology designed by a Deep Learning expert.

It is relevant to highlight at this point that an important goal of the whole DeepHealth project is to make the
libraries use the available HPC and Cloud infrastructure in a transparent way for Data/Computer scientists. So
the design and implementation of the EDDL+PyEDDL is also considering/including aspects in order to facilitate
the transparent use of HPC and Cloud, i.e. adding the requiering functionalities in the EDDL API to make it
possible the distributed training using COMPSs (see Section 3.5).

1.2 Directly related tasks

This deliverable consists in software developed in tasks T2.1, T2.2 and T2.6. Table 1 gives us the name and
the time span of these three tasks.

Table 1: Tasks whose work is reported in deliverable D2.1 (this one).

T2.1 M3–M8 Design and implementation of the centralised version of the EDDL

T2.2 M6–M31 Design and implementation of the distributed version of the EDDL

T2.6 M7–M31 Design and implementation of a Python API

T2.6 was initially scheduled to finish at M12, but it has been extended to M31 in one of the amendments
of the project in order to reflect the effort necessary to update the Python API every time a new version of the
EDDL is released.

The period assigned to T2.1 was not enough to complete the implementation of the centralised version of
the EDDL, the effort needed to complete T2.1 is being absorbed in T2.2. This is neither a problem nor a risk
as the partner in charge of both tasks is UPV-PRHLT. The EDDL development plan is progressing according to
the expectations. The centralised version of the EDDL is not 100% completed, but the current version covers
the needs of the 14 use cases in order not to delay the start of the pilots. More details are provided in Section
3.

1.3 Indirectly related tasks

The outcomes of tasks T2.1, T2.2 and T2.6 (the ones this deliverable corresponds to) are needed in other
tasks, in fact, the development of EDDL/PyEDDL and ECVL/PyECVL have been done in a close collaboration
between partners. It also has been the case of the front-end, the back-end, and adaptations to HPC and cloud
environments.

Frequent technical meetings have been organised between teams involved in tasks other than T2.1, T2.2
and T2.6. More specifically:

• Meetings between UNIMORE and UPV-PRHLT are taking place since the project started. Most of the
meetings were specific for deciding how to use tensors and other objects from the EDDL in the ECVL.
In particular, it plays an important role the conversion of images (grey or RGB) to EDDL tensors and
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vice-versa, this kind of conversions are crucial to construct instruction pipelines to run training proce-
dures where data augmentation is done on-the-fly thanks to functions provided by ECVL for loading and
transforming images.

• Meetings between BSC, CRS4 and UPV-PRHLT took place, and still are taking place (e.g. the regular
meetings of WP2 every month), to share concept designs and to decide how to implement specific
functions in the EDDL and the PyEDDL in order to be used from COMPSs.

The most important outcome is the serialisation of models using ONNX, the standard format for serialising
deep neural networks, in order to communicate gradients and weights between worker nodes and the
master node (more details in Subsection 3.5).

1.3.1 Pipeline with ECVL

As mentioned above, the training and inference procedures for many DNN topologies require the application of
data augmentation techniques on-the-fly. Data augmentation for most of the DeepHealth use cases are image
transformations carried out thanks to the functionalities provided by the ECVL. So making both libraries run
together in a coupled way is mandatory for the project.

According to this, an important collaboration is needed between the teams working on tasks T2.1, T2.2 and
T2.6 with the teams working on tasks T3.1 and T3.5. As part of this collaboration both teams are organising
activities carried out collaboratively:

• https://github.com/deephealthproject/use_case_pipeline

• https://github.com/deephealthproject/workshops.

1.3.2 Back-end

UNIMORE has done an important development within T3.1 and T3.4 that has been reflected in D3.5. The
back-end was not initially planned this way because in the proposal it was conceived as part of the front-end.
However, during the design of the DeepHealth toolkit we realised the back-end and the front-end needed to be
different software components of the DeepHealth toolkit, Figure 2 in Section 2 illustrates the toolkit’s scheme.

The back-end acts as the runtime for both libraries (ECVL and EDDL), runs on server instances which can
be deployed as Linux containers defined and created using Docker and orchestrated using Kubernetes (more
details in D2.6 and D3.6).

In this line, the collaboration of UNIMORE and UPV-PRHLT also included few discussions about the design
of the back-end according to the EDDL API, and the redesign of EDDL API when needed to facilitate the
development of the back-end.

1.3.3 Front-end

Despite front-end and back-end are two different software components because their implementation is com-
pletely different, we have to point out that both components interact in the sense that all the procedures the
user ask to be executed by using the front-end are actually executed by the back-end.

The front-end has been developed in T2.5 and T3.4 because, finally, the web-based graphical user interface
is one, from which the expert user can choose to run functions and procedures involving ECVL, EDDL, or both.

The front-end has been described in deliverables D2.5 and D3.5, but still needs some updates as both
libraries are updated during the DeepHealth project.

1.3.4 HPC and Cloud adaptation

The work carried and being carried out in tasks T2.3, T2.4, T3.2, T3.3, T5.1 and T5.4 needed, and still need,
outcomes from tasks T2.1, T2.2 and T2.6. Tasks T2.4 and T3.3 finish in M17.

• Deliverable D5.1 (M15) describes the progress in the design and implementation of the kernels (very
specific functions to run operations with tensors) adapted to run on FPGAs.

GA-No 825111 Page 7 of 24

https://github.com/deephealthproject/use_case_pipeline
https://github.com/deephealthproject/workshops


D2.1 EDDL Library

• Deliverable D5.4 (M15) details how the EDDL is used to train and inference in distributed HPC + Cloud
architectures thanks to the adaptation to COMPSs, where one of the key points is the serialisation of
models (i.e. neural networks) to report gradients from worker nodes to the master node and to send
weights updates from the master node to the worker nodes.

The serialisation of gradients and weights facilitates the definition of COMPSs tasks and data flow depen-
dencies in order to allow COMPSs runtime to distribute the workload in the HPC+Cloud infrastructure.

• Deliverable D2.3 (M17) describes how the EDDL has been adapted to be used in HPC+Cloud infrastruc-
tures by using COMPSs. A short explanation can be seen in Subsection 3.5.

• Deliverable D2.6 (M17), corresponding to T2.4, describes how cloud environments are prepared to run
training processes using EDDL/PyEDDL. Images of Linux containers have been defined and created
to automatically launch instances using Docker and Kubernetes. The following link shows how to use
Docker images:

https://github.com/deephealthproject/docker-libs
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2 Global overview

2.1 EDDL library within the DH toolkit

Figure 2 shows the scheme of the DeepHealth Toolkit with its main components. ECVL and EDDL appear at the
same level, however, there is a small dependency, ECVL uses some EDDL data structures and functionalities.

Both libraries are integrated in the back-end, which acts like a runtime for both libraries in the sense that
many (not all) of the functions provided by the libraries can be executed via the back-end. On the other hand,
the back-end is running on a server in order to satisfy all the queries coming from the front-end. Obviously,
multiple instances of the back-end can run on several servers thanks to docker-based Linux containers which
can be instantiated dynamically according to the workload thanks to Kubernetes. Details on this are described
in other deliverables: D2.3, D2.6 and D5.4.

The back-end runs the functions provided by the libraries in order to execute the instructions required by
the user through the front-end (e.g. starting a training procedure which includes some image transformations
in order to perform data augmentation: the DNN training is carried out by EDDL, the image transformations
on-the-fly by the ECVL). Details of the back-end and the front-end are described in deliverables D2.5 and
D3.5.

Figure 2: The EDDL library is one of the main components of the DeepHealth toolkit, providing the toolkit with all the Deep
Learning functionalities. Red arrows show the dependencies between components: A → B indicates that the component
A needs functionalities provided by component B.

2.2 Elements and features of the EDDL

Figure 3 illustrates a map with all the elements and features of the EDDL in addition to the design and imple-
mentation of the code. It can be observed the amount of details and aspects to be taken into account and
implemented in order to make the library to be used by other developers who can choose to work with the
EDDL (including the wrapper PyEDDL) instead of other toolkits like Tensorflow+Keras or PyTorch.

Next section (Section 3) gives more details about the current status of the development of the EDDL library,
but it is important to highlight the effort done to integrate Protocol Buffers from Google in order to import/export
models by using the ONNX standard format for neural networks. And the effort to make the installation as easy
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Figure 3: Map with elements and features of the EDDL in addition to its design and development.

as possible to other developers who can use the library or expert users who need just to design and evaluate
neural network topologies for any particular problem/project.

The key elements of the EDDL shown in Figure 3 are:

Tensor computations for CPU and GPU have been developed in tandem. FPGA kernels are in progress and
pending to be integrated. Eigen32 has been used for CPU and kernels developed by UPV-PRHLT in the
eddl::Tensor class have been used for GPU. It is planned to use CUDNN from NVIDIA to reach training
performances similar to TensorFlow and PyTorch when using GPUs.

Import/Export functionality uses the ONNX format for neural networks. Protocol Buffers from Google is the
library used in C++ for serialising a whole model (with weights or gradients) according to ONNX defini-
tions for layers, operators and network topologies. This point is crucial to make the DeepHealth toolkit
compatible with other Deep Learning toolkits, but as mentioned above, there are differences in the use of
the ONNX format, i.e. each toolkit introduces variants in the way they serialise some layers or operators
leading to incompatibilities between toolkits.

Configuration/Installation as detailed in the next section and can be found in the documentation3 4, several
alternative procedures for installation and configuration have been developed, and are still in progress.

2http://eigen.tuxfamily.org/
3https://deephealthproject.github.io/eddl/installation/installation.html
4https://deephealthproject.github.io/pyeddl/
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This is one of the critical points for the deployment of EDDL and PyEDDL, and even for ECVL, PyECVL
and the whole DeepHealth toolkit; making it easy for software developers and data/computer scientists
required a great effort in person months, and will require a great effort still. As we are aware that an easy
installation is crucial for achieving the goal of making these libraries widely used, a special working group
with people from CRS4, UNIMORE and UPV-PRHLT has been created to address all the installation
issues.

Examples EDDL and PyEDDL have available several examples at different levels of difficulty to illustrate
other software developers and technical staff from partners of the DeepHealth project who are platform
providers to integrate the EDDL and the PyEDDL in their platforms. Regarding the EDDL there are
examples at different levels:

• Basic: https://deephealthproject.github.io/eddl/usage/getting_started.html

• Intermediate: https://deephealthproject.github.io/eddl/usage/intermediate.html

• Advanced: https://deephealthproject.github.io/eddl/usage/advanced.html

And regarding the PyEDDL:

• Basic https://deephealthproject.github.io/pyeddl/getting_started.html

• Intermediate:
https://deephealthproject.github.io/pyeddl/getting_started.html#additional-examples

Although not all the examples in C++ are available in Python, we have to highlight that the examples in
C++ can be translated to Python in an easy way for any developer, the opposite is a little bit more difficult,
that is why there are more examples in C++.

Documentation is available online with the API reference manual for software developers. The URLs refer-
enced above are also part of the documentation in relation to installation and examples of how to use the
functions provided by the library. Other interesting parts of the documentation are:

• Troubleshot https://deephealthproject.github.io/eddl/installation/troubleshoot.html

• FAQ https://deephealthproject.github.io/eddl/installation/faq.html

• Video-tutorials https://deephealthproject.github.io/eddl/videotutorials/developers.html

And finally the API reference manual. Some examples are:

• Core layers: https://deephealthproject.github.io/eddl/layers/core.html

• Convolutional: https://deephealthproject.github.io/eddl/layers/convolutional.html

• Model: https://deephealthproject.github.io/eddl/model/model.html

• Losses: https://deephealthproject.github.io/eddl/bundle/losses.html

• GPU: https://deephealthproject.github.io/eddl/bundle/computing_service.html#gpu

• Tensors: https://deephealthproject.github.io/eddl/tensor/create.html#

Obviously, not all the sections of the documentation are completed so far. The generation of the docu-
mentation is automated by using Doxygen5 and Sphinx6.

Distributed computing is being done in a dual implementation:

• using COMPSs7 from BSC in Python with the PyEDDL by one hand, and

• directly in C++. First attempt in C++ uses OpenMPI8, but we are going to use another approach
because OpenMPI is not flexible enough for the purposes of the DeepHealth project, one weak point
is that the data transfer from the master node to many worker nodes is not actually implemented
with true broadcasting. This is a difficult issue to solve even using other approaches than OpenMPI.

5http://doxygen.nl/
6https://www.sphinx-doc.org/
7https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar
8https://www.open-mpi.org/
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In both cases, the distributed computing is based on the ONNX serialisation functions implemented in the
EDDL which make it possible to serialise a complete model including the weights or the gradients. This
facility makes it straightforward to report gradients from worker nodes to the master node and to update
the weights from the master node to the worker nodes.

And also in both cases the use of the underlying HPC+Cloud infrastructure is defined in one or more
configuration files.

Multi-threading on many-core computers (for CPU) and on machines with multiple GPUs is not consid-
ered distributed computing in the DeepHealth project because no data distribution is needed. Currently
this has been done using OpenMP9 in the case of CPUs, and developed internally in the case of GPUs.

License used for all DeepHealth outcomes is the MIT License:

• EDDL https://github.com/deephealthproject/eddl/blob/master/LICENSE

• PyEDDL https://github.com/deephealthproject/pyeddl/blob/master/LICENSE

The licences of the dependencies of EDDL and PyEDDL do not compromise the distribution of the EDDL
and PyEDDL as open source and free software:

• ONNX: https://github.com/onnx/onnx/blob/master/LICENSE

• Protocol Buffers: https://github.com/protocolbuffers/protobuf/blob/master/LICENSE

• Eigen3: http://eigen.tuxfamily.org/index.php?title=Main_Page#License

• ZLib: https://zlib.net/zlib_license.html

• Google Test: https://github.com/google/googletest/blob/master/LICENSE – but it is optional
and does not implies any restriction to the user of the EDDL.

• NVIDIA CUDA: https://docs.nvidia.com/cuda/eula/index.html

Regarding the use of Protocol Buffers in the EDDL, it was decided to add this dependency to the EDDL
after verifying that it is the unique alternative to serialise models in C++ using the ONNX format; otherwise
we would have had to implement from scratch all the required data structures and functions to serialise
models.

These licenses are not restricting and allow any software developer company to use the EDDL without
restrictions, i.e. for deploying their solutions that integrate the EDDL library even commercially.

9https://www.openmp.org/
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3 Development

The EDDL library is being coded using the C++ programming language. All the computations are faster in
C/C++, in particular the internal computations involving operations with matrices and mathematical functions.
Additionally, the use of GPUs from languages like C and C++ is possible thanks to the CUDA language exten-
sions for C/C++. Another implementation detail important to be highlighted is that the development for CPU
and GPU has been and is being carried out in tandem. This has been possible thanks to the design and imple-
mentation of a C++ class named Tensor10 where all the tensor operations are concentrated, including matrix
element-wise operations and dot product as a particular case of 2D-tensor operations. The Tensor class plays
the role of a hardware abstraction layer. If the model has been built to run on GPU, then tensors are created
in the GPU memory and the tensor operations are done by the GPU, otherwise the operations are done in the
CPU using as many cores as specified when the model is built. Which device to use and which resources of
each device to use is specified with computing service objects11.

The Python version of the EDDL, named PyEDDL, is in fact a wrapper to transparently use the C++ func-
tions in Python.

3.1 Current status

The current status of the development can be consulted at:

• EDDL development status:

https://github.com/deephealthproject/eddl/blob/master/docs/markdown/eddl_progress.md

Figure 4 shows an screenshot of the progress where it can be seen how each element can be in state done or
todo. The figure illustrates some functionalities of the core layers and if they are implemented for CPU and/or
GPU and if are included in ONNX.

Figure 4: Screenshot of the web page with the current development status.

10 In this context a tensor is a multidimensional array. The tensor documentation in the EDDL can be found at https://

deephealthproject.github.io/eddl/tensor/manipulation.html
11https://deephealthproject.github.io/eddl/bundle/computing_service.html
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3.1.1 GitHub repository

All the implemented code, examples, tutorials and other documentation is available on a GitHub public reposi-
tory:

• EDDL https://github.com/deephealthproject/eddl

• PyEDDL https://github.com/deephealthproject/pyeddl

3.1.2 Online documentation

The online documentation has been already referenced in the previous section (Section 2). All the documenta-
tion is automatically generated from the comments included in the code and other configuration files by means
of Sphinx-doc12 and Doxygen13.

• EDDL documentation main entry point https://deephealthproject.github.io/eddl/

• PyEDDL documentation main entry point https://deephealthproject.github.io/pyeddl/

3.1.3 Installation options

There are different options to install the EDDL, as commented in other parts of this document the automatic
installation of the libraries is one of the most difficult tasks we faced.

Several options have been implemented in order to facilitate the installation to developers and computer/-
data scientists. The goal is to achieve that any person interested in using or at least testing the EDDL and the
PyEDDL can do it in few minutes. With this purpose, specific channels for DeepHealth have been created in
the most popular package managers.

Next, the different options based on different package managers are listed, with the reference to the EDDL
GitHub repository where all the installation steps are detailed:

• Conda https://conda.io/ Figure 5 shows the command line to install the EDDL compiled for GPU, it
is assumed that the user already has the conda package manager installed. The installation of conda is
explained in https://conda.io/

Figure 5: https://deephealthproject.github.io/eddl/installation/installation.html

• HomeBrew for Mac OS X https://brew.sh/ Figure 6 shows the steps required to install the EDDL in
Mac OS X assuming that the homebrew package manager was already installed.

12https://www.sphinx-doc.org/
13http://doxygen.nl/
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Figure 6: https://deephealthproject.github.io/eddl/installation/installation.html

• CMake: From source (manual installation –special for developers) https://cmake.org/

Figure 7 shows the steps required to install the EDDL in Unix like systems, for Mac OS X is also available.
This option will be the one preferred by developers, where all the source code of the EDDL can be
downloaded from GitHub.

In order to solve dependencies on other packages, here it can be used the conda package manager
or the SUPERBUILD configuration option of the EDDL that solves the dependencies independently of
package managers, but only for installation from source.

Figure 7: https://deephealthproject.github.io/eddl/installation/installation.html

• Docker https://www.docker.com/

Docker images are available with different configurations of the libraries already installed.

– https://github.com/deephealthproject/docker-libs

Note: This is a work done by CRS4 as part of the strategy to automate the installation of the libraries in
cloud environments, so this is more part of T2.4 than one of the tasks related to this deliverable.

• Kubernetes https://kubernetes.io/

Not mature enough. This is not exactly an installation alternative, is complementary to docker-libs in
order to deploy cloud instances when both DeepHealth libraries ECVL and EDDL will be ready to be
used.

– https://github.com/deephealthproject/deephealth-k8s
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Note: This is a work done by TREE as part of the strategy to automate the installation of the libraries in
cloud environments, so this is more part of T2.4 than one of the tasks related to this deliverable.

3.2 What has been done since M3 and what is pending

Complete and ongoing:

• EDDL library: all the code has been written from scratch. The previous developments from UPV-PRHLT
(the UPV DL library14 –developed by Roberto Paredes and Jon Ander Gómez from PRHLT as part of
an automatic speech recognizer, not publicly available because it is registered software of the UPV–
and Layers15 –developed integrally by Roberto Paredes from PRHLT–) have served as a crucial experi-
ence to avoid common developing errors as well as to face the problems which appeared in the current
development. [Ongoing & according to the work plan]

• PyEDDL – Python wrapper for the EDDL: [Ongoing & according to the work plan]

• Creation of the GitHub repositories. [Complete]

• Generation of the documentation. [Ongoing & according to the work plan]

• Easy installation procedures. [Ongoing & according to the work plan]

• Import/Export using ONNX. [Ongoing & according to the work plan]

• Distributed version using COMPSs with the PyEDDL the ONNX serialisation functions. [Ongoing &
according to the work plan]

Pending:

• Bidirectional LSTM layer type.

• GRU –Gated Recurrent Unit– layer type.

• Attention model.

• Include last implemented layer types in ONNX.

• Alternative distributed implementations to carry out a comparative study focused on performance.

3.3 Which functionalities required by other partners are currently covered

DeepHealth has 14 use cases that are paired each one with at least one application platform to develop the
pilot test beds. Use cases UC1 and UC5 require very specific functionalities:

• UC1 needs unidirectional LSTM and the fast tanh(x) activation function defined as f(x) = x
1+|x| . Done.

• UC5 needs GRU and attention model to generate text sequences (what is well known as seq2seq mod-
els). Pending.

In summary, all requirements are satisfied except recurrent layers of the type GRU and the possiblity of
building models to use RNNs to generate sequences with or without attention model. It is expected to have
this functionalities ready to be used by the end of M19.
14https://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/15415
15https://github.com/RParedesPalacios/Layers
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3.4 Which HW is currently supported

Currently the EDDL and by extension the PyEDDL can use multiple cores of CPUs and several GPUs installed
in a single computer. What is included here as a description of how GPUs are used is also included in
deliverable D2.3 “EDDL Hardware algorithms and adaptation to HPC”. Deliverable D2.3 also includes details
about the development of the code to run some specific functions of the EDDL on FPGAs, but the code to use
FPGAs is not mature enough to be integrated in the stable and development versions of the EDDL.

Nevertheless, the EDDL library can increase free the amount of supported hardware by relying on other
frameworks. This is quite straightforward for inference code generation thanks to the support by the EDDL
of the ONNX exchange format. As depicted in D2.3 deliverable section 5.1, FPGA is supported for inference
through a design flow involving both the EDDL library and the CEA N2D2 Framework. In such configuration,
the EDDL library get access to every inference code generation provided after checking the capability of the
framework used as a third party to import the Neural Network generated the EDDL library. Moreover, thanks
to the activity carried out by CEA in WP5, the flow could be extended to distribute the inference code other
several FPGAs.

Regarding CPUs it has been already commented in Section 2 that the Eigen316 library is used to perform
algebraic operations with tensors and the use of multi-threading for leveraging many-core computers is done
by means of OpenMP17. The user can decide how many threads to use in the build function:

build(net, optimiser, {losses}, {metrics}, CS_CPU( nthreads ) );

The default value of nthreads is −1, this indicates the EDDL to use one thread per core of the CPU.

In the case of GPUs the CUDA C/C++ extension language has been used to implement the kernels which
perform all the tensor computations on GPUs. The use of one or more of the GPUs available in a single
computer is explained below, where some performance figures are presented.

GPU accelerators can be selected in the process of building the neural network using the CS GPU object.
This is the unique difference in the program that user must consider in order to select among the different
accelerators. The neural network design and the training procedure is agnostic about the hardware accelerator
selected. Therefore, in the building command the user can select the Computing Service associated to the
GPUs accelerators:

build(net, optimiser, {losses}, {metrics}, CS_GPU( params ) );

Where params are the following:

• Binary vector selecting the available accelerators (mandatory),

• Memory level requirements (optional, default="full mem").

• Synchronisation delay parameter (optional, default=1).

This parameter indicates the number of batches the training process will wait to merge the weights of the
networks running in the GPUs and then update the weights in all the active GPUs; it is applicable when
using 2 or more GPUs.

EDDL allows the user to select among the available GPUs. For instance, in a system with 4 GPUs installed
the user can specify to use only the first and third GPU by means of using a binary vector in the CS GPU object:

CS_GPU( {1,0,1,0} )

EDDL checks whether the system actually has these 4 GPUs installed and select only those activated by
the user. Regarding the memory levels, GPUs use to have low memory with respect to the main computer
memory. This GPU memory is a worth resource and EDDL propose three different memory levels:
16http://eigen.tuxfamily.org/
17https://www.openmp.org/
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Table 2: Running times in minutes to complete 50 epochs on the CIFAR10 dataset using a VGG16 neural network model
with a batch size of 100 samples for different values of the synchronisation delay in the case of using 2 GPUs; the synchro-
nisation delay is not necessary when using 1 GPU. HW: Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz with 12 cores and
two NVIDIA GeForce RTX 2080.

GPUs DELAY Time (minutes)
1 – 50
2 1 49
2 10 33
2 100 31
2 1000 31

full mem EDDL tries to get as much memory as possible to ensure the fastest processing.
mid mem EDDL performs some memory saving with a low speed degradation.
low mem EDDL performs a strong memory saving with a significant speed degradation.

An example of a 2 GPUs system where both GPUs are selected with a "low mem" setup:

CS_GPU( {1,1}, "low_mem" )

Finally, when using multiple GPUs we perform “data parallelism”. The neural network is replicated in all
the GPUs but the data is split and distributed among them. In this scenario we must ensure that GPUs have
the same parameters of the network. To this end the GPUs synchronise the parameters every batch of data
processed. This synchronisation entails a significant overhead in time. Therefore, we propose to postpone this
synchronisation after some batches, being this value set by the parameter of delay synchronisation.

For instance, an example of a 2 GPUs system where both GPUs are selected with a "mid mem" setup and
synchronised every 10 batches will be:

CS_GPU( {1,1}, 10, "mid_mem" )

3.4.1 Performance Results

Two different experiments have been carried out in order to assess the performance of the GPU accelerators
regarding the different parameters involved.

CIFAR10
In the first experiment we deal with a classical problem (CIFAR1018) that does not entail any special memory

requirements (always full mem). We build a VGG1619 neural network, train with batch size 100 and run a total
of 50 epochs. Table 2 shows the total training time in minutes varying the number of GPUs and the delay
parameter.

UC12 Skin lesion classification
In the second experiment we use a larger neural network topology also based on the model VGG16 and

deal with the UC12 about skin classification. This experiment requires to take care of the amount of memory
since the size of the images and the neural network topology are larger. Table 3 shows the time in seconds for
one epoch on the UC12 about skin classification using 1 GPU varying the batch size and memory requirements.
Each epoch comprises a total number of 19328 samples. The void cells represent those setups that do not fit
into memory.

Table 4 shows the performance results using a system with 2 GPUs, varying the batch size, memory
requirements and delay synchronisation parameter. The time is show in seconds for one epoch. The void cells
represent those setups that do not fit into memory.
18https://www.cs.toronto.edu/~kriz/cifar.html
19Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, arXiv:1409:1556v6,
https://arxiv.org/abs/1409.1556v6
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Table 3: Running times in seconds to complete one epoch using a VGG16 neural network model with the UC12 about skin
cancer classification; different batch sizes and different memory configurations were tested in the case of using 1 GPU.
Missing results correspond to those setups that the model plus one batch do not fit into the GPU memory. HW: Intel(R)
Core(TM) i7-7800X CPU @ 3.50GHz with 12 cores and two NVIDIA GeForce RTX 2080.

Batch
Mem full mid low

8 746 755 669
16 – – 647
32 – – 615

Table 4: Running times in seconds to complete one epoch using a VGG16 neural network model with the UC12 about
skin cancer classification; different batch sizes, different memory configurations and different synchronisation delays were
tested in the case of using 2 GPUs. Missing results correspond to those setups that the model plus one batch do not fit into
the GPU memory. HW: Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz with 12 cores and two NVIDIA GeForce RTX 2080.

Mem
full mid low

Batch
Delay 1 10 100 1 10 100 1 10 100

8 3120 860 571 3292 1002 617 3231 967 616
16 2287 727 441 2408 768 478 2405 747 470
32 – – – – – – 2654 587 382

The figures shown in Table 4 verify the expected effect of the synchronisation delay and the batch size,
both configuration parameters with a significant improvement in the performance. It can be observed how the
improvement from 1 to 10 is much higher than the improvement from 10 to 100. Depending on the model
complexity and the dataset used to train, the delay is a parameter that must be adjusted by the computer
scientist using the library in order to find a balance between convergence and performance.

Regarding the use of 1 GPU vs 2 GPUs, we have to compare the results obtained by using 1 GPU with
the ones corresponding to a delay of 100 batches when using 2 GPUs, because in the case of 1 GPU no
synchronisation is required.

Table 5 shows comparative results and the speedup factor reached when using 2 GPUs. The speedup
factor depends on both the level of memory requirements and the batch size. It can be observed the batch
size is the parameter with a higher impact. The best speedup factor is obtained with the larger batch size but
with the low memory setup, these results remark the relevance of the GPU memory.

3.5 Parallelisation and distribution of EDDL training operations with COMPSs

This section describes the parallelisation of the training operation of the PyEDDL using the pyCOMPSs pro-
gramming model. Figure 8 shows a snipped of the source code of the PyEDDL training operation parallelised
with COMPSs (simplified for readability purposes). The COMPSs tasks (or simply tasks) correspond to Python

Table 5: Comparative results of using 1 GPU vs 2 GPUs, times are show in seconds, the values of the column corresponding
to 2 GPUs also appear in Table 4. Last column shows the speedup factor. HW: Intel(R) Core(TM) i7-7800X CPU @
3.50GHz with 12 cores and two NVIDIA GeForce RTX 2080.

Config
GPUs 1 2 speedup

low mem bs=8 746 616 1.211
low mem bs=16 647 470 1.376
low mem bs=32 615 382 1.609
mid mem bs=8 755 478 1.579
full mem bs=8 669 571 1.171
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Figure 8: Snipped of the distributed training.

functions that can be potentially executed in parallel and are identified with a standard Python decorator @task
(lines 1 and 6). At execution time, the COMPSs runtime is responsible of distributing the execution of the
COMPSs tasks among the available computing resources (defined in the resource.xml and projects.xml

configuration files). The Python decorator @task can define the following arguments:

• IN/OUT (line 7) defines the data direction of the associated function parameters, and so the data depen-
dencies existing among COMPSs tasks20. A task with a data element defined as in IN argument cannot
start its execution until the previously defined tasks with the same data element defined as OUT complete.

• is replicated=True (line 1) forces the COMPSs task to be executed in all available computing re-
sources. This feature is used to ensure that all computing resource have the model in its local memory.

In Figure 8, the main function starts by creating and building the network model and making it available at
each worker using the is replicated argument (lines 16 and 17). Then, the function iterates synchronously
over num epochs epochs (line 18). At every epoch, a COMPSs task is instantiated (with the updated model
parameters as argument) to perform a train operation over a given batch of the data-set already available on
the worker node (lines 19 and 20). Given an epoch, all COMPSs tasks are synchronised with compss wait on

(line 22), that makes the COMPSs master21 wait until the completion of all tasks created at line 20. Then, the
parameters trained by each task are collected and unified, and set back to all COMPSs task to start a new
epoch. It is important to remark that the complete model is not transfer among computing resources, but only
the parameters locally trained at each worker are transferred. The model is created locally at each computing
node in the build function.

The task parallelism exposed by an execution of the distributed version of the PyEDDL training operation
can be represented as a Task Dependency Graph (TDG) shown in Figure 9. Each node corresponds to a
COMPSs task instantiating and edges represent data dependencies (and so data transfers) among tasks.
Notice that update gradients function is not a COMPSs task but has been included to represent the synchro-
nisation point of compss wait on. The number of batches (defined by the num batches variable at line 19 of
Figure 8) determines the “width” of the graph; the number of epochs (defined by the num epochs variable at
line 18 of Figure 8) determines the “height” of the graph.
20 By default, parameters are IN and returned values are OUT and so there is no need to explicitly specify them in the @task decorator;

they are however included at lines 1 and 7 for clarification purposes.
21 Notice that COMPSs runtime is organised as a master-worker structure, where the master is responsible of, among others, executing

the main function, creating tasks and instructing workers to execute them (see D5.4 “The runtime system for DeepHealth libraries”
(March 2020) for further details).
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Figure 9: Tasks representation of the application presented in Figure 8.

Figure 10: Execution workflow of the distributed training.
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Figure 10 shows the execution timeline of the PyEDDL training operation distributed among three COMPSs
worker nodes. The distributed training is divided into two parts: (1) the net model is built in all the computing
nodes available so that each worker have access to it (named build distribution in the figure); and (2) the
distributed training operation itself is performed over a given number of epochs (named Train batch distribution
in the figure).

We refer to the reader to see deliverables D2.6 “EDDL adaptation to cloud environments” and D2.3 “EDDL
Hardware algorithms and adaptation to HPC” for a preliminary performance speed-up analysis on the on-
premise cloud provided by TREE and the Marenostrum supercomputer provided by BSC.

3.6 Issues addressed during development

As any ambitious project this one has also had to face unexpected problems and code refactorisations. Several
code refactorisations have been carried out since the beginning with the purpose of improving the organisation
of the code and making it easier for other developers to use the functions provided by the library; however, the
three code refactorisations carried out so far are normal in any development project and have not represented
an extraordinary effort.

What has really taken an extra effort is (a) the implementation of automatic installations and (b) the integra-
tion of ONNX format to import and export neural networks in order to be compatible with other toolkits. Making
the installation easy to other partners of the project and any other people interested in using the EDDL library
made us to spend many developer hours.

The different possibilities of installing the EDDL and the PyEDDL presented in subsection 3.1.3 need to
solve many different issues related to:

(a) solve dependencies on packages of EDDL and PyEDDL like

• Eigen3 http://eigen.tuxfamily.org/

• Protocol Buffers https://github.com/protocolbuffers/protobuf

• ZLib: https://zlib.net

(b) prepare all the configuration files to install the EDDL via

• conda https://conda.io/

• homebrew https://brew.sh/

• Advanced Packaging Tool (APT) https://packages.qa.debian.org/a/apt.html
• or manually

(c) deal with bugs found in CMake22.

3.6.1 ONNX compatibility with variants used in other toolkits/frameworks

Regarding the adoption of ONNX to import/export neural networks, the main problems have been:

1. the incompatibilities between different versions of Protocol Buffers. If there is an earlier version installed
in the Linux system the compilation of the EDDL could fail. When installing the compiled version of the
EDDL is worse, because if incompatible versions of Protocol Buffers co-exist in the system then the
installation will fail. So achieving robust automatic installation procedures to make it easy the use of the
EDDL for developers and expert users implied an important effort in person-hours in T2.1, T2.2 and T2.6.

2. Another problem related to the use of ONNX has been that each Deep Learning toolkit serialises some
layers and operators in different ways; such toolkits do not strictly follow the standard ONNX. This implies
that the EDDL is not able to import neural networks created or trained using other toolkits.
At M16 we decided to strictly follow the ONNX standard file format defined at https://github.com/onnx/
onnx. This decision was motivated to guarantee full compatibility with ONNX runtime while considering
the project resources available. The reference we are following since M16 is to guarantee full compatibility
with ONNX runtime https://microsoft.github.io/onnxruntime/.

22https://cmake.org/
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In order to rapidly provide the EDDL library with support of inference code generation for FPGA, CEA has
developed in n2D2 the ONNX import capability, which insure the interworking between the two frameworks.
This will allow designing and training a Neural Network using the EDDL library and to generate the inference
code for FPGA thanks to N2D2. The corresponding designed flow is detailed in D2.3
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4 Conclusions

The development of the EDDL and the PyEDDL is in progress and according to the work plan. As it can be
seen in this document (the deliverable D2.1 is the software of EDDL+PyEDDL developed so far in T2.1, T2.2
and T2.6) and others deliverables related to this one, there is a lot of work carried out with a great effort done
by the development teams of the involved partners.

Thanks to the implementation of the import/export feature following the ONNX format for neural networks,
the EDDL+PyEDDL is compatible with other toolkits.

In addition, the serialisation of any network model thanks to ONNX is also used for distributed training.
Having the option to select weights or gradients for the serialisation, gradients can be reported from worker
nodes to the master noded; the standard and default option of doing the serialisation with weights is used
to update weights from the master node to the worker nodes. Specific internal functions in the EDDL have
been implemented to apply accumulated gradients reported from any worker node into the network model
maintained in the RAM memory the master node.

Additionally, it is important to point out how much fruitful it is being the collaboration between partners
involved in T2.1, T2.2 and T2.6 with other partners involved in other tasks of WP2 and other tasks of other
work packages. This is reflected in this deliverable other deliverables due to M17 and the ones due to M15.
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