

This project has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 82511

D1.2 HPC infrastructure and
application adaptation requirements

Project ref. no. H2020-ICT-11-2018-2019 GA No. 825111

Project title Deep-Learning and HPC to Boost Biomedical
Applications for Health

Duration of the project 1-01-2019 – 31-12-2021 (36 months)

WP/Task: WP1/ T1.3, T1.8

Dissemination level: PUBLIC

Document due Date: 30/06/2019 (M6)

Actual date of delivery 30/06/2019 (M6)

Leader of this deliverable BSC

Author (s) Eduardo Quiñones (BSC)

Contributors Jose Flich, Jon Ander (UPV); Thibaut
Goetghebuer, François Galea (CEA); Marina
Zapater (EPFL); Barbara Cantalupo (UNITO);
Tatiana Silva (TREE); Heiko Mauersberger
(PRODESIGN); Lluc Alvarez (BSC); Monica
Caballero (EVERIS)

Version V0.10

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 2 of 23

Document history

Version Date Document history/approvals

0.1 10/06/2019 First draft contents, including BSC contributions

0.2 16/06/2019 Contributions from UNITO

0.3 18/06/2019 Contributions from TREE

0.4 19/06/2019 Contributions from UPV

0.5 19/06/2019 Contributions from PROD

0.6 19/06/2019 Contributions from EPFL

0.7 24/06/2019 Contributions from CEA

0.8 27/06/2019 SIVECO internal peer review

0.9 28/06/2019 Project Manager (EVERIS) and technical manager (UPV) review

0.10 28/06/2019 Document ready for submission

DISCLAIMER

This document reflects only the author's views and the European Community is not responsible for any use
that may be made of the information it contains.

Copyright

© Copyright 2019 the DEEPHEALTH Consortium

This work is licensed under the Creative Commons License “BY-NC-SA”.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 3 of 23

Table of contents

DOCUMENT HISTORY.. 2

TABLE OF CONTENTS .. 3

1 EXECUTIVE SUMMARY ... 4

2 THE DEEPHEALTH COMPUTING INFRASTRUCTURE ... 4

3 THE API LAYER FOR ECVL AND EDDLL DEVELOPMENT .. 5

3.1 PARALLEL PROGRAMMING MODELS ... 5
3.2 DISTRIBUTED PROGRAMMING MODELS .. 6
3.3 NON-FUNCTIONAL REQUIREMENTS DESCRIPTION ... 6
3.4 N2D2 FRAMEWORK ... 7
3.5 CLOUD-BASED API ... 7

4 THE SOFTWARE ARCHITECTURE LAYER ... 7

4.1 SOFTWARE COMPONENTS .. 7
4.2 COMPSS ... 8

4.2.1 COMPSs Runtime Internals ... 8
4.2.2 Interface with the Underlying Computing Devices .. 10

4.3 GLOBAL RESOURCE MANAGER .. 10
4.3.1 The Slurm resource management tool .. 11
4.3.2 The GRM Allocator .. 12

4.4 PARALLEL RUN-TIMES ... 12
4.5 FPGA RUN-TIME ... 13

4.5.1 Xilinx run-time ... 13
4.5.2 MANGO run-time .. 14

4.6 NETLIST PARTITIONING AND VIVADO .. 17
4.7 OPENSTACK .. 18

5 THE HW ARCHITECTURE LAYER.. 19

5.1 HPC COMPUTING RESOURCES .. 19
5.1.1 BSC Computing Resources ... 19
5.1.2 UNITO Computing Resources .. 20
5.1.3 UPV Computing Resources .. 20
5.1.4 PRODESIGN Computing Resources .. 22

5.2 CLOUD-BASED COMPUTING RESOURCES ... 22
5.2.1 TREE Computing Resources ... 22
5.2.2 UNITO Computing Resources .. 22

6 CONCLUSIONS ... 23

7 BIBLIOGRAPHY .. 23

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 4 of 23

1 Executive summary

This deliverable covers the work done during 6 months in Task 1.3 “HPC system definition and
capabilities” and in Task 1.8 “EDDLL/ECVL requisites for efficient HPC and Cloud adaptation”.

This document describes the computing infrastructure to be developed within the DeepHealth project
and upon which the ECV and EDDL libraries will be developed and execute. The DeepHealth
computing infrastructure will incorporate two type of resources: (1) high performance computing
(HPC) resources, including advanced parallel and heterogeneous processor architectures featuring
GPUs and FPGAs upon which specific kernels will be accelerated; and (2) big-data cloud based
resources. This document also describes the programming models and access methods available by
the EDDLL and ECVL libraries for an efficient exploitation of the performance capabilities of the
DeepHealth computing infrastructure.

Tasks 1.3 and 1.8 have been carried out successfully and the related project objectives have been
reached and documented in this deliverable.

2 The DeepHealth Computing Infrastructure

Figure 1 provides the block diagram of the computing infrastructure proposed by the DeepHealth
project. The infrastructure will be composed of three main layers: (1) an abstraction programming
interface (API) exposed to ECVL and EDDLL developers to exploit the performance capabilities of
the underlying computing resources; (2) the software (SW) architecture composed of a set of run-time
frameworks in charge of efficiently managing the parallel and heterogeneous execution of the HPC
and cloud-based computing resources; and (3) a set of hardware (HW) computing resources. The
Figure also identifies for each partner the set of computing resources offered to the project.

Figure 1. Block diagram of the DeepHealth computing infrastructure.

Next subsections summarizes each of the components that form the DeepHealth computing
infrastructure.

COMPSs
Global Resource Manage

(Slurm-based)

Distributed Programming Model

(e.g., M/R, task-based)
Non-functional

requirements description

API provided to ECVL and EDDLL developers (WP2/WP3)

Parallel
Run-time

Netlist Partitioning
Vivado tools

N2D2

framework

Mango
Run-time

Mango
Cluster

MareNostrum 4 (Intel)
Arm ThunderX2
POWER9+Voltas Cluster

Private (NVIDIA)
+ Public Cloud

DeepHealth HPC HW Resources DeepHealth Cloud HW Resources

OpenStack
platform

Parallel Programming Models

(e.g., CUDA, OpenCL, OpenMP)
Cloud

API

DeepHealth SW Architecture

Private Cloud
(x86+NVIDIA T4)Tailored FPGA PCIe card

1200 cores
cluster (x86)

BSC

UNITO
PROD

UPV

UNITOTREE

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 5 of 23

3 The API Layer for ECVL and EDDLL Development

This section describes the API that DeepHealth will expose to the ECVL and EDDLL developers to
efficiently exploit the parallel and heterogeneous HPC and cloud-based capabilities of the DeepHealth
computing resources. The success of the exposed API will rely on its productivity, which combines
programmability, portability and performance:

1. Programmability refers to the capability of the API to provide the right level of abstraction to
identify the entities relevant of the program for its execution, e.g., units of parallelism,
synchronization, data dependencies and data transfers, while hiding the complexities of the
underlying platform.

2. Portability refers to the property of the API to collect the required information, so the run-time
is able to execute the same program in different computing platforms, achieving the maximum
(possible) performance of the program executed on a given platform.

3. Performance refers to the property of maximising the exploitation of the parallel and
heterogeneous capabilities of the program and the underlying platform.

3.1 Parallel Programming Models

Parallel programming models are of paramount importance to develop parallel applications, while
hiding the processor complexities. They can be classified in three main groups: (1) those supporting
only homogeneous and shared memory execution model; (2) those specialised on heterogeneous
and distributed memory execution model featuring acceleration devices such as GPUs, many-core
fabrics or SoC-FPGAs; and (3) those supporting both execution models, homogeneous and
heterogeneous. Due to the heterogeneous nature of the computing resources available in the project,
DeepHealth will focus only on the second and the third group:

 In the group of parallel programming models specialised on heterogeneous computing,
OpenCL [1] and CUDA (Compute Unified Device Architecture) [2] are currently the dominant
standards for parallel programming models specialised on acceleration devices inspired on
GPU programming. OpenCL is an open-source standard maintained by the Khronos Group,
while CUDA is property of the GPU vendor NVIDIA. Both are very similar in terms of execution
model as both define a platform model upon which the parallel program executes. The unit of
parallelism are kernels, which are grouped in blocks, and these in grids, creating a software
hierarchy that requires to match with the memory hierarchy of the underlying accelerator for
better performance. OpenACC [3] is a higher-level abstraction task-based programming
model that offers syntax to off-load computations to hardware accelerators with a simple, yet
powerful data movement interface between the host and the accelerators' memory(ies).

 In the group of parallel programming models specialised on both homogeneous and
heterogeneous computing, OpenMP [4], traditionally the de-facto standard for shared-memory
programming in HPC, implements a powerful tasking model that allows expressing fine-
grained and unstructured parallelism augmented with features to express data dependencies.
The tasking model is coupled with the acceleration model to facilitate the coordination between
the host and acceleration devices, providing support for synchronization and communication
among them. OmpSs [5], the programming model developed by the partner BSC and upon
which the OpenMP tasking model was inspired, supports a very similar tasking model,
extending the acceleration model by enabling to offload acceleration kernels from other
programming models, such as CUDA, OpenCL or FPGA bit-streams.

Moreover, with the objective of supporting the approach followed by EDDL, in which the control
program manages which devices to be used (CPU, GPU, FPGAs), the parallel programming model
will allow the identification and isolation of components and algorithms to be deployed on different
architectures (e.g. convolutions, matrix multiplications, activation functions). A list of identified kernels
and functions can be found in the Deliverable D1.3. API specifications for EDDLL and ECVL libraries.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 6 of 23

3.2 Distributed Programming Models

DeepHealth will consider distributed computing programming models supporting Map Reduce (M/R),
RDD and tasking programming models, very well-known models for the development of HPC and big
data applications:

 M/R is a programming model for processing parallelizable problems across large datasets
using a large number of nodes. Processing can occur on data stored either in a filesystem or
in a database. M/R can take advantage of the locality of data, processing it near the place it
is stored in order to minimize communication overhead. This programming models are
supported by Hadoop [6], Spark [7] and COMPSs [8] respectively.

 The task-based programming model is based on the sequential development of program in
which the user is mainly responsible for identifying the functions to be executed as
asynchronous parallel tasks and the data dependencies existing among them. The runtime
system is then in charge of exploiting the inherent concurrency of the code, automatically
detecting and enforcing the data dependencies between tasks and spawning these tasks to
the available resources. This programming model is supported by COMPSs.

DeepHealth will pay special attention to the COMPSs distributed framework developed (and owned)
by the partner of this project BSC, as it provides an unify programming environment to exploit both
the structured parallelism supported by M/R model, and unstructured parallelisms supported by the
task-based model (see Section 4.2 for further details).

3.3 Non-Functional Requirements Description

The DeepHealth project aims at achieving two goals which are directly related to the platform
infrastructure deployment, namely, the reduction of the time-to-model-in-production (ttmip), and the
efficient and transparent use of the heterogeneous resources to achieve the highest
performance/power/efficiency metrics. We tackle these challenges by proposing a two-fold approach:

 The development of a framework that enables expert users to launch their application (i.e.,
training workflows) on top of the underlying heterogeneous HPC infrastructure in a transparent
way. This will be done by using the Global Resource Manager (GRM) of EPFL, which will
serve as a single entry-point for all applications. We will extend the GRM to tackle the specific
allocation challenges of deep learning training and integrating it with the COMPS runtime.

 The development of multi-objective heterogeneity-aware workload allocation policies that,
incorporated into the GRM, will enable to allocate the different training requests to the most
adequate resources. These policies will be based on machine-learning techniques (and more
specifically reinforcement learning) and will take into consideration both the time-of-training-
models (totm) and the time-of-preprocessing-images (topi) when such a process can be done
in an automated way.

The development of the multi-objective workload allocation policies requires an initial step of profiling
the workloads on DeepHealth to understand their stress on the underlying system and understand
the set of resources that would potentially be needed depending on the input and accuracy
requirements. In this regard, once the different kernels required by the use cases are identified, we
will study their most likely combinations, and also the relevant pre-processing stages required on
those kernels. This creates a set of most probable workflows. Once this is defined for each of the
different applications, we will assess their computational and memory requirements. This will lead us
to a high-level understanding of their intensity that will help us to guide the process of runtime
allocation of computation to the heterogeneous resources.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 7 of 23

3.4 N2D2 Framework

N2D2 (Neural Network Design & Deployment) is a neural network framework developed by CEA. The
framework provides a fully integrated solution allowing simple and fast exploration of different network
topologies to develop neural network-based applications.

The platform supports data pre-processing and augmentation, neural network topology design,
benchmarking of both performance and resources usage, network quantization to reduce its size and
inference support for different hardware platforms, all in one unified framework. From one network
trained on GPU through N2D2, it's easy to export the network for inference to a GPU (with OpenCL,
Cuda or TensorRT), a CPU, a microcontroller or a FPGA depending on the needs.

During the DeepHealth project, N2D2 will be improved to support the usage of multiple GPU during
the neural network training phase. This will allow N2D2 to train large and deep neural networks faster
than with one GPU.

3.5 Cloud-based API

Once an EDDLL or ECVL application will be built, the COMPSs runtime will handle how the workload
is distributed in the targeted cloud infrastructure. The COMPSs runtime has two configuration files for
this aim: resources.xml and project.xml. These files contain information about the execution
environment and are completely independent from the application. The decision of how (and where)
the application will execute will be configured properly in these files.

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector
implements the interaction of the runtime with a given provider’s API. In the specific case of a
deployment in the TREE hybrid cloud solution, two connectors can be used with this purpose:

 OCCI: It could be interesting to use cloud resources in an IaaS way. In addition to that,
OpenStack is compatible with the standard.

 Mesos: It will be the best option if a PaaS way is preferred.

4 The Software Architecture Layer

The software architecture layer incorporates all the runtime frameworks needed to: (1) distribute the
computation across the multiple computing nodes available at the hardware level, and (2) orchestrate
the parallel and heterogeneous computation within the computing nodes. This layer will support all
the parallel and distributed programming models, as well as the different API, offered to ECVL and
EDDLL developers at the API layer.

4.1 Software Components

DeepHealth has carefully selected the software components that will form the software development
ecosystem upon which the EDDLL and the ECVL will be developed, prioritizing those owned by the
DeepHealth partners or offered as open-source with a large community behind. By doing so, we
envision to reduce the time-to-market and maximize exploitation opportunities of the DeepHealth
computing infrastructure. Table 1 identifies the set of software components that will be included in the
software architecture layer, the owner and the license. In the next subsections, the software
components are described in detail.

Table 1. Software components aimed to be included in the DeepHealth computing infrastructure.

SW Tool Owner License

COMPSs BSC Open-source

Global Resource Manager EPFL Open-source

OpenMP OpenMP ARB Open-source

CUDA NVIDIA Proprietary

OpenCL Khronos Group Open-source

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 8 of 23

Mango run-time UPV Open-source

Netlist partitioning & Vivado Tools Xillinx Proprietary

OpenStack OpenStack Foundation Open-source

N2D2 Framework CEA Proprietary

Docker Docker Inc. Proprietary

4.2 COMPSs

COMPSs, developed and owned by the DeepHealth partner BSC, provides a complete framework,
composed by a programming model (described in Section 3) and a runtime system, which is the focus
of this section, enabling the development of parallel applications for distributed infrastructures.
COMPSs enables the software development at a very low cost because of two main reasons: (1) the
model is based on sequential programming on top of popular programming languages (i.e., Java,
Python and C/C++), meaning that users do not have to deal with the typical duties of parallelization
and distribution (e.g., thread creation, data distribution, fault tolerance, etc.); and (2) the model
abstracts the application from the underlying distributed infrastructure, hence COMPSs programs do
not include any detail that could tie them to a particular platform (e.g., deployment or resource
manager) boosting portability among diverse computing infrastructures.

4.2.1 COMPSs Runtime Internals

The COMPSs runtime is organised in a master-worker structure as depicted in Figure 2:

 The master part executes in the resource where the application is launched, i.e., where the
main program runs, and is responsible for steering the distribution of the application, as well
as for implementing most of the features of the runtime concerning task processing and data
management and movement.

 The worker side is in charge of responding to task requests coming from the master, although
in some designs such as clusters it also has data transfer capabilities, and it can be transient
(i.e., a new runtime process is started every time a task request arrives) or persistent (i.e., a
process remains in the resource all along the application lifetime).

Worker

Master
Application:

main program

Application:
remote methods

COMPSs
worker

Network

Engine

Monitor
executor

Access
processor

Task
dispatcher

Adaptors

Logical
data

Data
location

Resource

Resources

Resource
manager

Access
processor

Cloud
connectors

Resource
provider

Figure 2. COMPSs runtime internals overview

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 9 of 23

The execution of a COMPSs program is summarized in Figure 3, and it involves the following stages:

1. Instrumentation of the main program. The first phase of the execution of a COMPSs
application consists of two parts: first, the methods selected by the programmer are replaced
by the asynchronous creation of their associated tasks, and then the data accesses specified
for these methods are checked in order to ensure the sequential memory consistency.

2. Data dependence analysis. As the main program runs, the runtime receives task creation
requests. The data consumed and produced by the task is used by the data dependence
analysis mechanism, which dynamically builds a Task Dependency Graph whose nodes are
tasks, and whose arrows symbolise the dependences. This graph represents the workflow of
the application and imposes what can and cannot be run concurrently.

3. Data renaming. In order to expose more parallelism in the applications, data causing Write-
after-Read (WaR) and Write-after-Write (WaW) dependences is renamed. The runtime keeps
track of all data accessed by the application and the versions of this data created after the
renaming process; hence it can guarantee the sequential memory consistency of the
application.

4. Task scheduling. A task remains in the Task Dependency Graph until all its predecessors
have completed, hence its dependences are solved. Then, using the list of worker resources
the runtime is provided with, if the runtime is able to find an available resource, the task is
scheduled. Otherwise, the task is added to a queue of pending tasks waiting for a free
resource. Different policies allow mapping tasks to resources (e.g., based on data locality, in
a round robin fashion, etc.). Additionally, there is a pre-scheduling mechanism offered in the
runtime in order to send the data needed by a task before the task can be executed,
overlapping computation and communication. This way, when the processor where the task
is to be executed gets free, the task can be submitted without waiting for any transfer.

5. Task submission, execution and monitoring. Once a task is ready to be executed, its input
data is transferred and the target resource is free, then the master runtime asynchronously
submits the task and registers the notifications coming from the worker resource informing
about the completion of the task. In the worker resource, the worker part of the runtime is in
charge of executing the task. Furthermore, the master runtime implements a fault-tolerant
mechanism that allows for retrying the submission either in the same resource or in a different
one. Finally, when the task completes, the runtime removes it from the Task Dependency
Graph.

…

T1(data1,data2);

T2(data3,data4);

T3(data2,data4,data5);

T4(data6,data7);

T5(data5,data7,data8);

…

Sequential Application Distributed Resources

Resource 1

Resource 2

Resource N

…

T1 T2

T3 T4

T5

In
st

ru
m

en
ta

ti
o

n

Data
transfer

Task dependences
analysis

+
Data renaming

Data transfer
+

Task submission &
monitoring

Task
scheduling

Task Dependency Graph

Figure 3. Execution pipeline of a COMPSs application

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 10 of 23

4.2.2 Interface with the Underlying Computing Devices

An important feature of COMPSs is the capability to execute applications transparently with regards
the underlying infrastructure. With such a purpose, COMPSs implements the interaction between the
runtime and the computational resources (i.e., physical resources or VMs) by means of different
adaptors, each implementing the specific providers APIs. This mechanism makes possible the
execution of computational loads on fog environments without the need of adapting the code, hence
providing scalability and elasticity properties. Currently, there are two adaptors implemented: (1) Non-
blocking I/O, NIO, which offers high performance in secured environments, and (2) GAT, which offers
interoperability with diverse kinds of Grid middleware.

Together with the adaptors, the COMPSs runtime uses connectors to communicate with the cloud
managers. Each connector implements the interaction of the runtime with a given provider's API,
supporting four basic operations: (1) ask for the price of a certain VM in the provider, (2) get the time
needed to create a VM, (3) create a new VM and (4) terminate a VM. This design allows
connectors to abstract the runtime from the particular API of each provider and facilitates the addition
of new connectors for other providers. Currently COMPSs implements four different connectors: (1)
JClouds [8], (2) Docker [9], and (3) Mesos [10].

Flexibility is one of the main features of COMPSs. With that in mind, COMPSs has been integrated
with several programming models in order to better exploit the capabilities of the different target
architectures. This means the COMPSs programmers can define computing elements in several
programming languages: (a) OpenCL, for GPGPU programming, (b) OmpSs for CPU, GPU and
Cluster programming, or (c) MPI [11], for Cluster programming. The integration between COMPSs
and OmpSs is particularly interesting, because OmpSs further integrates other programming
languages such as CUDA, OpenCL and MPI. This means that COMPSs not only allows for flexible,
programmable and portable programming of both edge and cloud devices, but also supports a
performance-aware environment where specific programming models can be used to exploit the
special features of each target architecture.

4.3 Global Resource Manager

The goal of the Global Resource Manager (GRM) is to provide a single entry-point to the applications
being run on the HPC computing infrastructures in DeepHealth, while at the same time allocating
tasks in the most performance and energy-efficient way to the heterogeneous underlying resources.
Furthermore, the GRM in DeepHealth will also be able to act as an interface and API to the different
platforms deployed in DeepHealth. This API will enable running different workloads directly on the
clusters, and retrieving the training results obtained.

From a functionality-wise perspective, the GRM is composed of the following main components:

 The resource manager software, which is in charge of managing incoming workloads,
scheduling (i.e., queuing them) and allocating them to the nodes. This function is undertaken
by the Slurm resource manager.

 The workload allocation policies (in what follows ”GRM Allocator”), which take decisions on
the specific allocation of tasks to nodes. The GRM allocator contains the power/
performance/thermal- aware policies, which are in charge of improving the efficiency and
performance of the system.

 Data manager and data retrieval services that allow interfacing with both COMPS to
coordinate workload allocation and the different platform APIs (when needed).

From a purely implementation perspective, the GRM consists on a bunch of services working together
in a coordinated way. Therefore, when a new application is launched in the cluster via the entry point,
the GRM Allocator will apply one upon the various policies developed ad-hoc for the MANGO runtime
(see Section 4.5.2 for further details), developed in the framework of the EU MANGO project1, which

1 http://www.mango-project.eu/

http://www.mango-project.eu/

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 11 of 23

will decide the node where the application will be executed, and will finally perform the allocation, by
executing the SLURM Controller (in particular the slurmctld), which will, in its turn, using the slurmd
of the selected node, assign the task to a node and pass its control to COMPS for the runtime
management. This flow is depicted in the next figure.

Figure 5. GRM Flow: entry-point to applications, and allocation via SLURM

To facilitate deployment and in order to achieve the objectives of replicability and robustness, the
GRM will be running under docker containers. Because of its dockerized deployment, the GRM can
be used in virtually any HPC infrastructure which runs a LinuxOS supporting dockers.

4.3.1 The Slurm resource management tool

SLURM was selected to accomplish the task of single entry-point to the system as it is a highly
scalable cluster management tool. However, because it is a general-purpose HPC cluster
management tool, it does not provide the heterogeneity-awareness required in DeepHealth. This
heterogeneity awareness is achieved by means of its integration with the COMPS runtime and,
subsequently, with the MANGO runtimes.

SLURM works in a centralized way having a central manager called “slurmctld” (SLURM controller)
responsible of monitoring the status of applications and the resource availability. On the other hand,
each node will be running a SLURM daemon, or “slurmd”, which supervises applications running on
each node and reports its status. In short, SLURM daemons work as a remote shell for the controller.
Moreover, all the information gathered by SLURM, can be stored in a MySQL database, managed by
the “slurmdbd” daemon, which runs in the controller and records accounting information, historical
data and current status of the nodes, among others.

An overview of how SLURM works is depicted in Figure 4 (taken from the official documentation).

Figure 4. Slurm basic components diagram and overview

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 12 of 23

4.3.2 The GRM Allocator

The GRM allocator accomplishes the goal of providing power, performance and energy aware
management policies. The GRM allocator will implement two different types of policies in DeepHealth.

From an implementation perspective, the GRM Allocator needs to be able to express the
dependencies and behaviour of the heterogeneous underlying hardware, abstracting the view from
the whole HPC cluster perspective. The GRM Allocator does so by generating a graph network which
contains all the available nodes. This support is implemented by using the Networkx Python library.
Networkx provides all the necessary tools to manipulate, study and distribute for complex networks
graphs. For deciding a specific allocation DiGraph Networkx object (which behaves as a bidirectional
graph) is instantiated.

The next figure shows an example graph for the MANGO architecture. In this case we build a network
where the main node is the controller of the global resource manager (Called Master). This node is
followed by the General Purpose nodes and then, attached to them the Heterogeneous Nodes. In this
last layer, unlike the previous where the 64 cores of each node are represented by the same node,
each accelerator core will have its own node. Edges have a normalized weight between 0 and 1 that
represents the suitability of that specific node for the execution of the workload, with respect to a
specific performance/energy objective.

Figure 4. Graph used for current allocation policies in the MANGO cluster. Bodes represent resources and edges are
weighted depending on the performance/efficiency of the accelerator for executing a particular task.

The current policies supported by the GRM traverse this graph by assigning different weights to the
edges depending on the allocation objectives using heuristics. Within DeepHealth, EPFL will propose
drastically new allocation algorithms that will be able to tackle the complexity of deep learning training
workloads. These algorithms will be based on reinforcement learning techniques (and specifically Q-
learning).

4.4 Parallel Run-times

Current parallel programming models rely on run-time libraries to dynamically assign parallel entities
to processor resources with the objective of maximizing performance, while respecting the parallel
execution model.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 13 of 23

In heterogeneous computing, the offloading of computation to accelerators requires the sharing of
code and data between host and accelerator. Two mechanisms are dominant on modern
heterogeneous systems: copy-based, which requires the copy of code and data to the private
accelerator memory space; and unified virtual memory (UVM), which enables zero-copy data sharing
by supporting virtual memory addressing from the accelerator. The major vendors of high-end
heterogeneous systems on chip (SoCs) have products on the market that support the UVM according
to the OpenCL or NVIDIA CUDA specification.

Moreover, run-times supporting heterogeneous computing have the capability of (dynamically)
deciding whether a parallel kernel is offloaded to the accelerator or executed on the host. This feature,
supported by OpenMP and SoC-FPGA controllers run-times, provides a great support to better adapt
the heterogeneous computing to execution conditions. To do so, the executable incorporates the two
compiled versions of the kernel, i.e. one supported by the host and another supported by the
accelerator.

4.5 FPGA Run-time

4.5.1 Xilinx run-time

Xilinx FPGA devices are becoming very popular in the field of machine learning to accelerate neural
networks computation. One of the main reasons of the recent uptake of Xilinx devices is the simplicity
of its use. Traditionally, programming FPGA devices has been a complex task that required deep
knowledge of the underlying hardware and thus, has been generally considered out of the scope of
most programmers in HPC and machine learning. However, the recent release of the Xilinx software
development acceleration tool (SDA) has made possible developing FPGA applications with low
complexity. The Xilinx SDA tool allows the utilization of high-level synthesis (HLS) to implement
kernels written in C in the FPGA and the direct use of kernels implemented in a hardware description
language (RTL). Developing kernels with C and HLS reduces the complexity of implementing FPGA
kernels and requires lower expertise from the programmer side.

The SDA tool implements the Xilinx run-time (XRT) to allow the user to easily offload computations
from the host to the FPGA devices. At the host side the most common approach is using OpenCL as
the programming language. With OpenCL the user can from the host side define which of the
applications kernels will be executed in the FPGA and how the data is transferred from the host to the
device and vice versa. The XRT is implemented as a combination of userspace and kernel driver
components supporting PCIe based accelerator cards and provides standardized software interface
to Xilinx FPGA such as the OpenCL. The key user APIs are defined in xclhal2.h header file. Figure 4,
taken from the XRT public documentation2, illustrates the XRT software architecture.

Figure 4. XRT stack (extracted from the XRT public documentation).

In the context of DeepHealth we will focus on the Xilinx platforms that can be programmed using the
SDA tool. The FPGA device in these platforms is programmed with a static shell and a reconfigurable
(dynamic) region. The static region covers all the circuit logic required to provide the interface to the
host and memory whereas the dynamic region is the one that is used to include the application specific

2 https://xilinx.github.io/XRT/2018.3/html/index.html

https://xilinx.github.io/XRT/2018.3/html/index.html

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 14 of 23

kernels. The reconfigurable region contents are compiled by the user using SDA compiler tool chain
to produce an FPGA binary file (aka xclbin).

4.5.2 MANGO run-time

One of the target infrastructures in the project is the MANGO prototype, developed in the framework
of the EU MANGO project. It consists of a set of FPGA clusters interconnected to HPC servers via
PCIe connection. In the MANGO project a complete run-time solution was deployed in order to allow
the deployment of applications running both at the servers nodes and at the FPGA clusters. Figure 5
shows the basic context addressed by the MANGO run-time. We can see a general-purpose node
(GN) with a multi-FPGA cluster attached via PCI express. The FPGA includes some accelerators
(PEAK and NUP units) and some memories (DDR3 or DDR4).

Figure 5. MANGO context (one GN server and one FPGA cluster).

The MANGO runtime is decomposed in a library and a daemon process. The API (HN library) allows
an application to communicate with running kernels on the FPGAs from the server. It allows for
efficient communication by writing and reading into allocated buffers in DDR memories spread over
the FPGA cluster. Synchronization primitives are defined as well to enable kernels on the FPGAs and
applications on the servers to collaborate and run concurrently. Multiple transfer modes can be used
in the HN API as well as monitoring capabilities for the underlying network deployed in the clusters
and the accelerator units defined within the FPGAs. Figure 6 shows how HN daemon and libraries
interplay in a setting with different applications running on the system (BBQE is a resource manager).

Figure 6. MANGO HN daemon and libraries.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 15 of 23

The running process (HN daemon) allows multiple applications running at the same time, each one
targeting different accelerator units within the FPGA clusters and concurrently transferring data at the
same time. Figure 7 shows the schematic of the current HN daemon.

Figure 7 MANGO HN daemon.

The MANGO runtime can be adapted also to multiple configurations of the FPGA clusters, enabling
a custom adaptation of the hardware (number and type of FPGAs, DDR memories, interconnects) to
the specificities of the target application.

Another API (MANGO API) has been deployed to enable applications to transparently request
resources from the clusters and manage them in a unified and simplified way. Indeed, a resource
manager (BBQE) is added to the MANGO solution taking care of resource usage.

At the end, the MANGO API and its associated run-time is similar to the OpenCL API and run-time.
In the next sections we will show the main API functions.

In DeepHealth, the complete run-time of MANGO will be put at the service of the libraries deployed
(both EDDL and ECVL).

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 16 of 23

 HN API definition (part I)

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 17 of 23

 HN API definition (part II)

4.6 Netlist Partitioning and Vivado

When designing applications for a FPGA target, at the lowest abstraction level the application is
represented as a network of interconnected components. Those components are instances of the
resources that are available on the FPGA (flip-flops, lookup tables, DSP, BRAM, ...), interconnected
with nets (or wires) to form a specialized electronic circuit design. The description of this network is
called a netlist. Typically, that netlist would be placed and routed on a description of the FPGA
hardware, resulting in a bitstream file to be used to configure the FPGA.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 18 of 23

Netlists are the result of the conversion from a higher-level representation of the application written in
a Register-Transfer Level (RTL) language, typically VHDL or Verilog. This RTL to netlist conversion
is called the synthesis phase.

All those phases (synthesis, place and route, and bitstream generation) are present in the Xilinx
development environment Vivado. However, Vivado projects typically target only one FPGA.

The N2D2 framework developed at CEA allows the generation of specialized circuits for deep neural
networks (see Section 3.4), according to a high-level description of the DNN. This FPGA-targeted
DNN technology, also designed at CEA, is called DNeuro. Its output comes in the form of an RTL
description of the neural network. Like any FPGA project, this RTL description can be imported
in Vivado to be synthesized, placed and routed, to be implemented on the desired FPGA hardware.

In DeepHealth, we will work on partitioning large netlists that cannot fit in a single FPGA, so that they
are deployed on a multi-FPGA platform consisting in tightly-coupled FPGAs. Ideally, the developed
technology will act as an abstraction of a very large FPGA, so the original design does not have to be
modified. The partitioner will take as input the netlist to be partitioned and a description of the target
platform (including the detail of communication links between I/O ports of the different FPGAs), and
will output one netlist for each of the FPGAs in the platform, to be placed and routed in Vivado. The
goal is to be able to deploy very large DNeuro networks on multi-FPGA platforms.

4.7 OpenStack

The OpenStack project [13] is an open source cloud computing platform that supports several types
of cloud environments. It is a set of software tools for building and managing cloud computing
platforms for public and private clouds. The project aims for simple implementation, massive
scalability, and a rich set of features.

OpenStack lets users deploy virtual machines and other instances that handle different tasks for
managing a cloud environment on the fly. It aims horizontal scalability for a big variety of projects.
Besides that, it is possible not only using on-premise hosts, it is very usual to use public cloud
providers to make bigger our private cloud.

OpenStack is made up of many different moving parts. Because of its open nature, anyone can add
additional components to OpenStack to help it to meet their needs. But the OpenStack community
has collaboratively identified nine key components that are a part of the "core" of OpenStack, which
are distributed as a part of any OpenStack system and officially maintained by the OpenStack
community:

 Nova is the primary computing engine behind OpenStack. It is used for deploying and
managing large numbers of virtual machines and other instances to handle computing tasks.

 Swift is a storage system for objects and files.

 Cinder is a block storage component.

 Neutron provides the networking capability for OpenStack. It helps to ensure that each of the
components of an OpenStack deployment can communicate with one another quickly and
efficiently.

 Horizon is the dashboard behind OpenStack.

 Keystone provides identity services for OpenStack.

 Glance provides image services to OpenStack. In this case, "images" refers to images (or
virtual copies) of hard disks. Glance allows these images to be used as templates when
deploying new virtual machine instances.

 Ceilometer provides telemetry services, which allow the cloud to provide billing services to
individual users of the cloud.

 Heat is the orchestration component of OpenStack, which allows developers to store the
requirements of a cloud application in a file that defines what resources are necessary for that
application.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 19 of 23

5 The HW Architecture Layer

5.1 HPC Computing Resources

5.1.1 BSC Computing Resources

The Barcelona Supercomputing Center provides a set of high-performance computing resources to
study how the most relevant performance limitations of biomedical applications can be effectively
removed on modern HPC infrastructures. By using these cutting-edge high-performance systems, the
DeepHealth project will demonstrate how its software toolkit is able to efficiently exploit
heterogeneous HPC infrastructures. BSC hosts several HPC machines, being Marenostrum 4 the
most relevant one. Marenostrum 4 has two separate parts: a general-purpose block and a block
featuring emerging technologies. The emerging technologies block is formed of 2 clusters with
different technologies and has the aim of providing computational services with the most advanced
pre-exascale computing devices. Moreover, BSC provides another HPC cluster called Dibona, which
is not part of Marenostrum 4. Altogether, BSC provides 4 HPC systems with different characteristics:

1. The general-purpose block of Marenostrum 4 consists of 48 racks with 3456 nodes of two Intel
Xeon Platinum chips, each with 24 processors running at 2.1 GHz. The whole cluster sums
up a total of 165,888 processors and 390 Terabytes of main memory, and is capable of
reaching a peak performance of 11.15 PetaFLOP/s. The nodes are interconnected by a low-
latency Omnipath network with a fully connected fat-tree topology.

2. One of the blocks of emerging technologies present in Marenostrum 4 combines IBM
POWER9 CPUs and NVIDIA Volta GPUs. This cluster is composed of 54 nodes, where each
node is equipped with 2 POWER9 processors, 4 Volta GPUs and 6.4TB of NVMe. The nodes
are like the ones in the Sierra supercomputer at Lawrence Livermore National Laboratories,
which is the 3rd fastest supercomputer in the top500 list. This cluster is very suitable both for
HPC and for machine learning workloads, as it reaches a peak performance 1.57 PetaFLOP/s
in double precision computations.

3. The second block of emerging technologies of Marenostrum 4 will be deployed in the next
year, and it will be composed of Fujitsu A64FX 64-bit ARMv8 processors. The whole cluster
will have a total computational capacity of over 0.5 PetaFLOP/s, and its nodes will have the
same architecture as the future post-K supercomputer in Japan. The Fujitsu A64FX processor
that will form the nodes of the cluster consists of 48 cores with a process technology of 7nm
and 4 stacks of 8GB HBM2 memory, for a total of 32GB per node. This processor targets
many different types of Exascale workloads, delivering a peak performance of 2.7 TeraFLOP/s
of double precision compute power, 5.4 TeraFLOP/s in single precision, 10.8 TeraFLOP/s in
half-precision, and 21.6 TeraOP/s in 8-bit integer precision. The architecture also includes new
512-bit SVE extensions with specific instructions for machine learning, making it a very
appealing cutting-edge system for the workloads used in the DeepHealth project.

4. Dibona is a prototype HPC cluster designed by Arm, BSC and Bull (Atos Group) in the context
of the Mont-Blanc project. Following the Mont-Blanc philosophy, Dibona is an Arm-based
system composed by Cavium ThunderX2 processors. The cluster has 48 nodes with 2
ThunderX2 CPUs each, and can reach a theoretical peak performance of 49 TeraFLOP/s. The
ThunderX2 processor contains 32 ARMv8 cores running at 2GHz with 128-bit NEON SIMD
extension, a 32MB last-level cache, and different integrated hardware accelerators for
security, storage, networking and virtualization. In terms of memory capacity, each node
includes 128GB of DDR4 main memory with 8 channels per ThunderX processor and a 128GB
SSD disk for local storage.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 20 of 23

5.1.2 UNITO Computing Resources

UNITO will provide the access to the Occam cluster operated by the Competence Centre on Scientific
Computing of the University of Turin (see Figure 8). Occam is a 1200-core heterogenous cluster
composed of 32 “light” nodes (dual Xeon E5 12-core, 128GB), 4 “fat” nodes (quad Xeon E7 12 –core,
768GB), and 4 “GPU” nodes (dual Xeon E5 12-core, 128GB, 2 Nvidia P100). The key peculiarity of
the Occam cluster is its management system, which has been designed and developed at UNITO
[12]. Specifically, the Occam management system makes it possible to dynamically create bare-metal
virtual clusters (called virtual farms), which are booked with a calendar-based system and deployed
with a user-defined docker image. This makes it possible to run parallel application according to
different deployment models, including SLUM and PBS queues, direct co-allocation of a set of nodes,
etc. More information can be found at C3S web portal [13]. Occam is equipped with a 300TB Lustre
“scratch” storage and a 1PB “archive” storage.

Figure 8. The Occam platform at UNITO.

5.1.3 UPV Computing Resources

UPV premises have a Xilinx ALVEO U200 PCIe card (see Figure 9). This FPGA is one of the most
advances Xilinx boards available in the market and will be used to port and test the EDDL and ECVL
libraries with the Xilinx workflow. The ALVEO U200 card has on-chip memory of 35MB and an off-
chip memory of 64B. The ALVEO implements PCIe 3rd generation with 16 lanes to provide a
bandwidth of 77GB/s and can perform 18.6 Tera INT8 operations per second.

Figure 9. The Xilinx Alveo Board.

To increase the performance that can be achieved with the latest Xilinx devices, UPV also plans to
adapt the EDDL library to work in FPGA-based cloud environments. To that end, UPV will use one of
the available cloud services that offer FPGA computation services using ALVEO cards (e.g AWS F1

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 21 of 23

or nimbix) to show the scalability to the EDDL library with FPGA acceleration using the most advanced
technology.

As commented previously, the MANGO prototype will be used in the DeepHealth project. The
MANGO prototype available at UPV premises has the following configuration:

 8 supermicro servers

 1 Gigabit switch

 8 clusters of FPGAs, each with
o 12 FPGAs
o 8 DDR memories
o 1 PCIe connection

Each cluster is built using a prototype solution from partner PRODESIGN, enabling the connection of
12 FPGAs and 8 DDR memories. Figure 10 shows a cluster.

Figure 10. MANGO cluster photo.

The prototype has 78 KINTEX FPGAs, 8 ZYNQ FPGAs, 8 VIRTEX FPGAs, 1 STRATIX10 FPGA, and
one ULTRASCALE+ FPGA. In total, 96 FPGAs and 64 DDR memories (see Figure 11).

Figure 11. MANGO prototype photo.

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 22 of 23

In addition to the previous infrastructure, UPV will also consider porting and using more advanced
solutions based on FPGAs. One exploratory path is the use of the Cloud FPGA solution provided by
IBM. This solution guarantees full throughput between FPGAs and provides a basic MPI-based
communication infrastructure. This exploratory path will be analysed by UPV.

5.1.4 PRODESIGN Computing Resources

PRODESIGN will provide a FPGA based PCIe board. The FPGA will be a XILINX Ultrascale+ FPGA
with embedded HBM memory (one of VU3P). The board furthermore will contain DDR4 SDRAM
memory modules for additional DRAM extensions.

For host communication it is planned to deliver three types of interfaces:

 USB interface for board management and status observation

 MMI64 communication interface for general purpose application specific communication

 Data streaming interface for DMA based data exchange with the application providing the
highest throughput

With the boards comes a management tool which allows to program the FPGA bitstream and to
perform some status monitoring. The tool communicates with the board via USB.

For application specific communication Linux device drivers and C APIs will be provided for the MMI64
and the data streaming interface.

5.2 Cloud-based Computing Resources

5.2.1 TREE Computing Resources

In several situations, hybrid cloud solutions are a suitable solution to solve most common use cases
in SME organizations. TREE hybrid cloud is an IaaS solution, that is a way to have an elastic hardware
infrastructure easily adaptable to different workloads. TREE hybrid cloud solution will consist of:

 A private cloud which is composed of a set of on-premise hosts: it will be composed of a cluster
of 5 nodes:

o 4 nodes of x86 hosts (all of them with 4 cores and one of them with 16GB RAM and
the other three 12GB RAM)

o 1 x86 host (10 cores and 64 GB RAM) with a GPU (Nvidia Pascal Titan X, 12Gb
GDDR5)

 Several public cloud providers which allow to make grow up the private cloud when it is
necessary. There are a big variety of possible types of hardware which could be used from
public cloud providers (I.e. Hosts of different sizes or GPUs). AWS, Azure and Google Cloud
provide IaaS solutions.

5.2.2 UNITO Computing Resources

The HPC4AI cloud3 at UNITO operates a federated version of the OpenStack cloud. Specifically,
HPC4AI implements a zone of the GARR cloud the Italian national consortium of research. HPC4AI
is currently composed of 10 nodes (Xeon 40-core, 512GB RAM, 4 NVidia T4 GPUs) but is planned
to grow up to 40 nodes of the same kind mid 2020. HPC4AI offers the standard IaaS services of the
OpenStack cloud and exploit a novel Deployment-as-a-Service service based on the Juju software
(from Canonical).

3 https://hpc4ai.it

https://hpc4ai.it/

 D1.2 HPC infrastructure and application adaptation requirements

GA-No 825111 Page 23 of 23

6 Conclusions

The computing infrastructure upon which the DeepHealth EDDL and the ECVL libraries will execute
have been described in this document. Concretely, the document incorporates: (1) the programming
models (and access methods) for an efficient exploitation of the performance capabilities of the
DeepHealth computing infrastructure, and (2) the HPC and big-data cloud based computing
resources available for the project. This set of software and hardware components described in this
deliverable will be the baseline upon which WP5 activities will be developed.

Overall, tasks 1.3 and 1.8 has been carried out successfully and the related project objectives have
been reached and documented in this deliverable.

7 Bibliography

[1] Khronos Group, “https://www.khronos.org/opencl/,” 2019.

[2] NVIDIA, “https://developer.nvidia.com/cuda-zone,” 2019.

[3] OpenACC, “https://www.openacc.org,” 2019.

[4] OpenMP ARB, “https://www.openmp.org,” 2019.

[5] BSC, “https://pm.bsc.es/ompss,” 2019.

[6] Apache Hadoop, “https://hadoop.apache.org,” 2019.

[7] Apache Spark, “https://spark.apache.org,” 2019.

[8] BSC, “https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-
superscalar/,” 2019.

[9] Apache jcloud, “https://jclouds.apache.org,” 2019.

[10] Docker Inc., “https://www.docker.com,” 2019.

[11] Apache Mesos, “https://mesos.apache.org,” 2019.

[12] Open MPI, “https://www.open-mpi.org,” 2019.

[13] openstack, “https://www.openstack.org,” 2019.

[14] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris and S. Rabellino, “OCCAM: a flexible, multi-
purpose and extendable HPC cluster,” Journal of Physics: Conf. Series (CHEP 2016), 2017.

[15] “C3S@UNITO web,” [Online]. Available: https://c3s.unito.it/.

