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1 Executive summary 

This deliverable covers the work done during 6 months in Task 1.3 “HPC system definition and 
capabilities” and in Task 1.8 “EDDLL/ECVL requisites for efficient HPC and Cloud adaptation”. 

This document describes the computing infrastructure to be developed within the DeepHealth project 
and upon which the ECV and EDDL libraries will be developed and execute. The DeepHealth 
computing infrastructure will incorporate two type of resources: (1) high performance computing 
(HPC) resources, including advanced parallel and heterogeneous processor architectures featuring 
GPUs and FPGAs upon which specific kernels will be accelerated; and (2) big-data cloud based 
resources. This document also describes the programming models and access methods available by 
the EDDLL and ECVL libraries for an efficient exploitation of the performance capabilities of the 
DeepHealth computing infrastructure. 

Tasks 1.3 and 1.8 have been carried out successfully and the related project objectives have been 
reached and documented in this deliverable. 

2 The DeepHealth Computing Infrastructure 

Figure 1 provides the block diagram of the computing infrastructure proposed by the DeepHealth 
project. The infrastructure will be composed of three main layers: (1) an abstraction programming 
interface (API) exposed to ECVL and EDDLL developers to exploit the performance capabilities of 
the underlying computing resources; (2) the software (SW) architecture composed of a set of run-time 
frameworks in charge of efficiently managing the parallel and heterogeneous execution of the HPC 
and cloud-based computing resources; and (3) a set of hardware (HW) computing resources. The 
Figure also identifies for each partner the set of computing resources offered to the project. 

 

Figure 1. Block diagram of the DeepHealth computing infrastructure. 

Next subsections summarizes each of the components that form the DeepHealth computing 
infrastructure. 
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3 The API Layer for ECVL and EDDLL Development 

This section describes the API that DeepHealth will expose to the ECVL and EDDLL developers to 
efficiently exploit the parallel and heterogeneous HPC and cloud-based capabilities of the DeepHealth 
computing resources. The success of the exposed API will rely on its productivity, which combines 
programmability, portability and performance: 

1. Programmability refers to the capability of the API to provide the right level of abstraction to 
identify the entities relevant of the program for its execution, e.g., units of parallelism, 
synchronization, data dependencies and data transfers, while hiding the complexities of the 
underlying platform.  

2. Portability refers to the property of the API to collect the required information, so the run-time 
is able to execute the same program in different computing platforms, achieving the maximum 
(possible) performance of the program executed on a given platform. 

3. Performance refers to the property of maximising the exploitation of the parallel and 
heterogeneous capabilities of the program and the underlying platform. 

3.1 Parallel Programming Models 

Parallel programming models are of paramount importance to develop parallel applications, while 
hiding the processor complexities. They can be classified in three main groups: (1) those supporting 
only homogeneous and shared memory execution model; (2) those specialised on heterogeneous 
and distributed memory execution model featuring acceleration devices such as GPUs, many-core 
fabrics or SoC-FPGAs; and (3) those supporting both execution models, homogeneous and 
heterogeneous. Due to the heterogeneous nature of the computing resources available in the project, 
DeepHealth will focus only on the second and the third group: 

 In the group of parallel programming models specialised on heterogeneous computing, 
OpenCL [1] and CUDA (Compute Unified Device Architecture) [2] are currently the dominant 
standards for parallel programming models specialised on acceleration devices inspired on 
GPU programming. OpenCL is an open-source standard maintained by the Khronos Group, 
while CUDA is property of the GPU vendor NVIDIA. Both are very similar in terms of execution 
model as both define a platform model upon which the parallel program executes. The unit of 
parallelism are kernels, which are grouped in blocks, and these in grids, creating a software 
hierarchy that requires to match with the memory hierarchy of the underlying accelerator for 
better performance. OpenACC [3] is a higher-level abstraction task-based programming 
model that offers syntax to off-load computations to hardware accelerators with a simple, yet 
powerful data movement interface between the host and the accelerators' memory(ies). 

 In the group of parallel programming models specialised on both homogeneous and 
heterogeneous computing, OpenMP [4], traditionally the de-facto standard for shared-memory 
programming in HPC, implements a powerful tasking model that allows expressing fine-
grained and unstructured parallelism augmented with features to express data dependencies. 
The tasking model is coupled with the acceleration model to facilitate the coordination between 
the host and acceleration devices, providing support for synchronization and communication 
among them. OmpSs [5], the programming model developed by the partner BSC and upon 
which the OpenMP tasking model was inspired, supports a very similar tasking model, 
extending the acceleration model by enabling to offload acceleration kernels from other 
programming models, such as CUDA, OpenCL or FPGA bit-streams. 

Moreover, with the objective of supporting the approach followed by EDDL, in which the control 
program manages which devices to be used (CPU, GPU, FPGAs), the parallel programming model 
will allow the identification and isolation of components and algorithms to be deployed on different 
architectures (e.g. convolutions, matrix multiplications, activation functions). A list of identified kernels 
and functions can be found in the Deliverable D1.3. API specifications for EDDLL and ECVL libraries. 
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3.2 Distributed Programming Models 

DeepHealth will consider distributed computing programming models supporting Map Reduce (M/R), 
RDD and tasking programming models, very well-known models for the development of HPC and big 
data applications:  

 M/R is a programming model for processing parallelizable problems across large datasets 
using a large number of nodes. Processing can occur on data stored either in a filesystem or 
in a database. M/R can take advantage of the locality of data, processing it near the place it 
is stored in order to minimize communication overhead. This programming models are 
supported by Hadoop [6], Spark [7] and COMPSs [8] respectively.  

 The task-based programming model is based on the sequential development of program in 
which the user is mainly responsible for identifying the functions to be executed as 
asynchronous parallel tasks and the data dependencies existing among them. The runtime 
system is then in charge of exploiting the inherent concurrency of the code, automatically 
detecting and enforcing the data dependencies between tasks and spawning these tasks to 
the available resources. This programming model is supported by COMPSs.  

DeepHealth will pay special attention to the COMPSs distributed framework developed (and owned) 
by the partner of this project BSC, as it provides an unify programming environment to exploit both 
the structured parallelism supported by M/R model, and unstructured parallelisms supported by the 
task-based model (see Section 4.2 for further details). 

3.3 Non-Functional Requirements Description 

The DeepHealth project aims at achieving two goals which are directly related to the platform 
infrastructure deployment, namely, the reduction of the time-to-model-in-production (ttmip), and the 
efficient and transparent use of the heterogeneous resources to achieve the highest 
performance/power/efficiency metrics. We tackle these challenges by proposing a two-fold approach: 

 The development of a framework that enables expert users to launch their application (i.e., 
training workflows) on top of the underlying heterogeneous HPC infrastructure in a transparent 
way. This will be done by using the Global Resource Manager (GRM) of EPFL, which will 
serve as a single entry-point for all applications. We will extend the GRM to tackle the specific 
allocation challenges of deep learning training and integrating it with the COMPS runtime.   

 The development of multi-objective heterogeneity-aware workload allocation policies that, 
incorporated into the GRM, will enable to allocate the different training requests to the most 
adequate resources. These policies will be based on machine-learning techniques (and more 
specifically reinforcement learning) and will take into consideration both the time-of-training-
models (totm) and the time-of-preprocessing-images (topi) when such a process can be done 
in an automated way.  

The development of the multi-objective workload allocation policies requires an initial step of profiling 
the workloads on DeepHealth to understand their stress on the underlying system and understand 
the set of resources that would potentially be needed depending on the input and accuracy 
requirements. In this regard, once the different kernels required by the use cases are identified, we 
will study their most likely combinations, and also the relevant pre-processing stages required on 
those kernels. This creates a set of most probable workflows. Once this is defined for each of the 
different applications, we will assess their computational and memory requirements. This will lead us 
to a high-level understanding of their intensity that will help us to guide the process of runtime 
allocation of computation to the heterogeneous resources.  
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3.4 N2D2 Framework 

N2D2 (Neural Network Design & Deployment) is a neural network framework developed by CEA. The 
framework provides a fully integrated solution allowing simple and fast exploration of different network 
topologies to develop neural network-based applications.   

The platform supports data pre-processing and augmentation, neural network topology design, 
benchmarking of both performance and resources usage, network quantization to reduce its size and 
inference support for different hardware platforms, all in one unified framework. From one network 
trained on GPU through N2D2, it's easy to export the network for inference to a GPU (with OpenCL, 
Cuda or TensorRT), a CPU, a microcontroller or a FPGA depending on the needs.  

During the DeepHealth project, N2D2 will be improved to support the usage of multiple GPU during 
the neural network training phase. This will allow N2D2 to train large and deep neural networks faster 
than with one GPU. 

3.5 Cloud-based API 

Once an EDDLL or ECVL application will be built, the COMPSs runtime will handle how the workload 
is distributed in the targeted cloud infrastructure. The COMPSs runtime has two configuration files for 
this aim: resources.xml and project.xml. These files contain information about the execution 
environment and are completely independent from the application. The decision of how (and where) 
the application will execute will be configured properly in these files. 

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector 
implements the interaction of the runtime with a given provider’s API. In the specific case of a 
deployment in the TREE hybrid cloud solution, two connectors can be used with this purpose: 

 OCCI: It could be interesting to use cloud resources in an IaaS way. In addition to that, 
OpenStack is compatible with the standard. 

 Mesos: It will be the best option if a PaaS way is preferred. 

4 The Software Architecture Layer 

The software architecture layer incorporates all the runtime frameworks needed to: (1) distribute the 
computation across the multiple computing nodes available at the hardware level, and (2) orchestrate 
the parallel and heterogeneous computation within the computing nodes. This layer will support all 
the parallel and distributed programming models, as well as the different API, offered to ECVL and 
EDDLL developers at the API layer. 

4.1 Software Components 

DeepHealth has carefully selected the software components that will form the software development 
ecosystem upon which the EDDLL and the ECVL will be developed, prioritizing those owned by the 
DeepHealth partners or offered as open-source with a large community behind. By doing so, we 
envision to reduce the time-to-market and maximize exploitation opportunities of the DeepHealth 
computing infrastructure. Table 1 identifies the set of software components that will be included in the 
software architecture layer, the owner and the license. In the next subsections, the software 
components are described in detail. 

Table 1. Software components aimed to be included in the DeepHealth computing infrastructure. 

SW Tool Owner License 

COMPSs BSC Open-source 

Global Resource Manager EPFL Open-source 

OpenMP OpenMP ARB Open-source 

CUDA NVIDIA Proprietary 

OpenCL Khronos Group Open-source 
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Mango run-time UPV Open-source 

Netlist partitioning & Vivado Tools Xillinx Proprietary 

OpenStack OpenStack Foundation Open-source 

N2D2 Framework CEA Proprietary 

Docker Docker Inc. Proprietary 

4.2 COMPSs 

COMPSs, developed and owned by the DeepHealth partner BSC, provides a complete framework, 
composed by a programming model (described in Section 3) and a runtime system, which is the focus 
of this section, enabling the development of parallel applications for distributed infrastructures. 
COMPSs enables the software development at a very low cost because of two main reasons: (1) the 
model is based on sequential programming on top of popular programming languages (i.e., Java, 
Python and C/C++), meaning that users do not have to deal with the typical duties of parallelization 
and distribution (e.g., thread creation, data distribution, fault tolerance, etc.); and (2) the model 
abstracts the application from the underlying distributed infrastructure, hence COMPSs programs do 
not include any detail that could tie them to a particular platform (e.g., deployment or resource 
manager) boosting portability among diverse computing infrastructures. 

4.2.1 COMPSs Runtime Internals 

The COMPSs runtime is organised in a master-worker structure as depicted in Figure 2:  

 The master part executes in the resource where the application is launched, i.e., where the 
main program runs, and is responsible for steering the distribution of the application, as well 
as for implementing most of the features of the runtime concerning task processing and data 
management and movement. 

 The worker side is in charge of responding to task requests coming from the master, although 
in some designs such as clusters it also has data transfer capabilities, and it can be transient 
(i.e., a new runtime process is started every time a task request arrives) or persistent (i.e., a 
process remains in the resource all along the application lifetime).  
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Figure 2. COMPSs runtime internals overview 
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The execution of a COMPSs program is summarized in Figure 3, and it involves the following stages: 

1. Instrumentation of the main program. The first phase of the execution of a COMPSs 
application consists of two parts: first, the methods selected by the programmer are replaced 
by the asynchronous creation of their associated tasks, and then the data accesses specified 
for these methods are checked in order to ensure the sequential memory consistency. 

2. Data dependence analysis. As the main program runs, the runtime receives task creation 
requests. The data consumed and produced by the task is used by the data dependence 
analysis mechanism, which dynamically builds a Task Dependency Graph whose nodes are 
tasks, and whose arrows symbolise the dependences. This graph represents the workflow of 
the application and imposes what can and cannot be run concurrently. 

3. Data renaming. In order to expose more parallelism in the applications, data causing Write-
after-Read (WaR) and Write-after-Write (WaW) dependences is renamed. The runtime keeps 
track of all data accessed by the application and the versions of this data created after the 
renaming process; hence it can guarantee the sequential memory consistency of the 
application. 

4. Task scheduling. A task remains in the Task Dependency Graph until all its predecessors 
have completed, hence its dependences are solved. Then, using the list of worker resources 
the runtime is provided with, if the runtime is able to find an available resource, the task is 
scheduled. Otherwise, the task is added to a queue of pending tasks waiting for a free 
resource. Different policies allow mapping tasks to resources (e.g., based on data locality, in 
a round robin fashion, etc.). Additionally, there is a pre-scheduling mechanism offered in the 
runtime in order to send the data needed by a task before the task can be executed, 
overlapping computation and communication. This way, when the processor where the task 
is to be executed gets free, the task can be submitted without waiting for any transfer. 

5. Task submission, execution and monitoring. Once a task is ready to be executed, its input 
data is transferred and the target resource is free, then the master runtime asynchronously 
submits the task and registers the notifications coming from the worker resource informing 
about the completion of the task. In the worker resource, the worker part of the runtime is in 
charge of executing the task. Furthermore, the master runtime implements a fault-tolerant 
mechanism that allows for retrying the submission either in the same resource or in a different 
one. Finally, when the task completes, the runtime removes it from the Task Dependency 
Graph. 

…
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Figure 3. Execution pipeline of a COMPSs application 
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4.2.2 Interface with the Underlying Computing Devices 

An important feature of COMPSs is the capability to execute applications transparently with regards 
the underlying infrastructure. With such a purpose, COMPSs implements the interaction between the 
runtime and the computational resources (i.e., physical resources or VMs) by means of different 
adaptors, each implementing the specific providers APIs. This mechanism makes possible the 
execution of computational loads on fog environments without the need of adapting the code, hence 
providing scalability and elasticity properties. Currently, there are two adaptors implemented: (1) Non-
blocking I/O, NIO, which offers high performance in secured environments, and (2) GAT, which offers 
interoperability with diverse kinds of Grid middleware. 

Together with the adaptors, the COMPSs runtime uses connectors to communicate with the cloud 
managers. Each connector implements the interaction of the runtime with a given provider's API, 
supporting four basic operations: (1) ask for the price of a certain VM in the provider, (2) get the  time  
needed  to  create  a  VM, (3) create  a  new  VM  and  (4) terminate  a  VM.  This design allows 
connectors to abstract the runtime from the particular API of each provider and facilitates the addition 
of new connectors for other providers. Currently COMPSs implements four different connectors: (1) 
JClouds [8], (2) Docker [9], and (3) Mesos [10].  

Flexibility is one of the main features of COMPSs. With that in mind, COMPSs has been integrated 
with several programming models in order to better exploit the capabilities of the different target 
architectures. This means the COMPSs programmers can define computing elements in several 
programming languages: (a) OpenCL, for GPGPU programming, (b) OmpSs for CPU, GPU and 
Cluster programming, or (c) MPI [11], for Cluster programming. The integration between COMPSs 
and OmpSs is particularly interesting, because OmpSs further integrates other programming 
languages such as CUDA, OpenCL and MPI. This means that COMPSs not only allows for flexible, 
programmable and portable programming of both edge and cloud devices, but also supports a 
performance-aware environment where specific programming models can be used to exploit the 
special features of each target architecture. 

4.3 Global Resource Manager 

The goal of the Global Resource Manager (GRM) is to provide a single entry-point to the applications 
being run on the HPC computing infrastructures in DeepHealth, while at the same time allocating 
tasks in the most performance and energy-efficient way to the heterogeneous underlying resources. 
Furthermore, the GRM in DeepHealth will also be able to act as an interface and API to the different 
platforms deployed in DeepHealth. This API will enable running different workloads directly on the 
clusters, and retrieving the training results obtained.  

From a functionality-wise perspective, the GRM is composed of the following main components: 

 The resource manager software, which is in charge of managing incoming workloads, 
scheduling (i.e., queuing them) and allocating them to the nodes. This function is undertaken 
by the Slurm resource manager.  

 The workload allocation policies (in what follows ”GRM Allocator”), which take decisions on 
the specific allocation of tasks to nodes. The GRM allocator contains the power/ 
performance/thermal- aware policies, which are in charge of improving the efficiency and 
performance of the system. 

 Data manager and data retrieval services that allow interfacing with both COMPS to 
coordinate workload allocation and the different platform APIs (when needed). 

From a purely implementation perspective, the GRM consists on a bunch of services working together 
in a coordinated way. Therefore, when a new application is launched in the cluster via the entry point, 
the GRM Allocator will apply one upon the various policies developed ad-hoc for the MANGO runtime 
(see Section 4.5.2 for further details), developed in the framework of the EU MANGO project1, which 



1 http://www.mango-project.eu/ 

http://www.mango-project.eu/
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will decide the node where the application will be executed, and will finally perform the allocation, by 
executing the SLURM Controller (in particular the slurmctld), which will, in its turn, using the slurmd 
of the selected node, assign the task to a node and pass its control to COMPS for the runtime 
management. This flow is depicted in the next figure. 

 

Figure 5. GRM Flow: entry-point to applications, and allocation via SLURM 

To facilitate deployment and in order to achieve the objectives of replicability and robustness, the 
GRM will be running under docker containers. Because of its dockerized deployment, the GRM can 
be used in virtually any HPC infrastructure which runs a LinuxOS supporting dockers. 

4.3.1 The Slurm resource management tool 

SLURM was selected to accomplish the task of single entry-point to the system as it is a highly 
scalable cluster management tool. However, because it is a general-purpose HPC cluster 
management tool, it does not provide the heterogeneity-awareness required in DeepHealth. This 
heterogeneity awareness is achieved by means of its integration with the COMPS runtime and, 
subsequently, with the MANGO runtimes.  

SLURM works in a centralized way having a central manager called “slurmctld” (SLURM controller) 
responsible of monitoring the status of applications and the resource availability. On the other hand, 
each node will be running a SLURM daemon, or “slurmd”, which supervises applications running on 
each node and reports its status. In short, SLURM daemons work as a remote shell for the controller. 
Moreover, all the information gathered by SLURM, can be stored in a MySQL database, managed by 
the “slurmdbd” daemon, which runs in the controller and records accounting information, historical 
data and current status of the nodes, among others. 

An overview of how SLURM works is depicted in Figure 4 (taken from the official documentation). 

 

Figure 4. Slurm basic components diagram and overview 
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4.3.2 The GRM Allocator 

The GRM allocator accomplishes the goal of providing power, performance and energy aware 
management policies. The GRM allocator will implement two different types of policies in DeepHealth. 

From an implementation perspective, the GRM Allocator needs to be able to express the 
dependencies and behaviour of the heterogeneous underlying hardware, abstracting the view from 
the whole HPC cluster perspective. The GRM Allocator does so by generating a graph network which 
contains all the available nodes. This support is implemented by using the Networkx Python library. 
Networkx provides all the necessary tools to manipulate, study and distribute for complex networks 
graphs. For deciding a specific allocation DiGraph Networkx object (which behaves as a bidirectional 
graph) is instantiated. 

The next figure shows an example graph for the MANGO architecture. In this case we build a network 
where the main node is the controller of the global resource manager (Called Master). This node is 
followed by the General Purpose nodes and then, attached to them the Heterogeneous Nodes. In this 
last layer, unlike the previous where the 64 cores of each node are represented by the same node, 
each accelerator core will have its own node. Edges have a normalized weight between 0 and 1 that 
represents the suitability of that specific node for the execution of the workload, with respect to a 
specific performance/energy objective.  

Figure 4. Graph used for current allocation policies in the MANGO cluster. Bodes represent resources and edges are 
weighted depending on the performance/efficiency of the accelerator for executing a particular task. 

The current policies supported by the GRM traverse this graph by assigning different weights to the 
edges depending on the allocation objectives using heuristics. Within DeepHealth, EPFL will propose 
drastically new allocation algorithms that will be able to tackle the complexity of deep learning training 
workloads. These algorithms will be based on reinforcement learning techniques (and specifically Q-
learning). 

4.4 Parallel Run-times 

Current parallel programming models rely on run-time libraries to dynamically assign parallel entities 
to processor resources with the objective of maximizing performance, while respecting the parallel 
execution model.  
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In heterogeneous computing, the offloading of computation to accelerators requires the sharing of 
code and data between host and accelerator. Two mechanisms are dominant on modern 
heterogeneous systems: copy-based, which requires the copy of code and data to the private 
accelerator memory space; and unified virtual memory (UVM), which enables zero-copy data sharing 
by supporting virtual memory addressing from the accelerator. The major vendors of high-end 
heterogeneous systems on chip (SoCs) have products on the market that support the UVM according 
to the OpenCL or NVIDIA CUDA specification.  

Moreover, run-times supporting heterogeneous computing have the capability of (dynamically) 
deciding whether a parallel kernel is offloaded to the accelerator or executed on the host. This feature, 
supported by OpenMP and SoC-FPGA controllers run-times, provides a great support to better adapt 
the heterogeneous computing to execution conditions. To do so, the executable incorporates the two 
compiled versions of the kernel, i.e. one supported by the host and another supported by the 
accelerator.  

4.5 FPGA Run-time 

4.5.1 Xilinx run-time 

Xilinx FPGA devices are becoming very popular in the field of machine learning to accelerate neural 
networks computation. One of the main reasons of the recent uptake of Xilinx devices is the simplicity 
of its use. Traditionally, programming FPGA devices has been a complex task that required deep 
knowledge of the underlying hardware and thus, has been generally considered out of the scope of 
most programmers in HPC and machine learning. However, the recent release of the Xilinx software 
development acceleration tool (SDA) has made possible developing FPGA applications with low 
complexity. The Xilinx SDA tool allows the utilization of high-level synthesis (HLS) to implement 
kernels written in C in the FPGA and the direct use of kernels implemented in a hardware description 
language (RTL). Developing kernels with C and HLS reduces the complexity of implementing FPGA 
kernels and requires lower expertise from the programmer side. 

The SDA tool implements the Xilinx run-time (XRT) to allow the user to easily offload computations 
from the host to the FPGA devices. At the host side the most common approach is using OpenCL as 
the programming language. With OpenCL the user can from the host side define which of the 
applications kernels will be executed in the FPGA and how the data is transferred from the host to the 
device and vice versa. The XRT is implemented as a combination of userspace and kernel driver 
components supporting PCIe based accelerator cards and provides standardized software interface 
to Xilinx FPGA such as the OpenCL. The key user APIs are defined in xclhal2.h header file. Figure 4, 
taken from the XRT public documentation2, illustrates the XRT software architecture.  

 

Figure 4. XRT stack (extracted from the XRT public documentation). 

In the context of DeepHealth we will focus on the Xilinx platforms that can be programmed using the 
SDA tool. The FPGA device in these platforms is programmed with a static shell and a reconfigurable 
(dynamic) region. The static region covers all the circuit logic required to provide the interface to the 
host and memory whereas the dynamic region is the one that is used to include the application specific 



2 https://xilinx.github.io/XRT/2018.3/html/index.html 

https://xilinx.github.io/XRT/2018.3/html/index.html
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kernels. The reconfigurable region contents are compiled by the user using SDA compiler tool chain 
to produce an FPGA binary file (aka xclbin). 

4.5.2 MANGO run-time 

One of the target infrastructures in the project is the MANGO prototype, developed in the framework 
of the EU MANGO project. It consists of a set of FPGA clusters interconnected to HPC servers via 
PCIe connection. In the MANGO project a complete run-time solution was deployed in order to allow 
the deployment of applications running both at the servers nodes and at the FPGA clusters. Figure 5 
shows the basic context addressed by the MANGO run-time. We can see a general-purpose node 
(GN) with a multi-FPGA cluster attached via PCI express. The FPGA includes some accelerators 
(PEAK and NUP units) and some memories (DDR3 or DDR4). 

 

Figure 5. MANGO context (one GN server and one FPGA cluster). 

The MANGO runtime is decomposed in a library and a daemon process. The API (HN library) allows 
an application to communicate with running kernels on the FPGAs from the server. It allows for 
efficient communication by writing and reading into allocated buffers in DDR memories spread over 
the FPGA cluster. Synchronization primitives are defined as well to enable kernels on the FPGAs and 
applications on the servers to collaborate and run concurrently. Multiple transfer modes can be used 
in the HN API as well as monitoring capabilities for the underlying network deployed in the clusters 
and the accelerator units defined within the FPGAs. Figure 6 shows how HN daemon and libraries 
interplay in a setting with different applications running on the system (BBQE is a resource manager). 

 

Figure 6. MANGO HN daemon and libraries. 
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The running process (HN daemon) allows multiple applications running at the same time, each one 
targeting different accelerator units within the FPGA clusters and concurrently transferring data at the 
same time. Figure 7 shows the schematic of the current HN daemon. 

 

 

Figure 7 MANGO HN daemon. 

The MANGO runtime can be adapted also to multiple configurations of the FPGA clusters, enabling 
a custom adaptation of the hardware (number and type of FPGAs, DDR memories, interconnects) to 
the specificities of the target application. 

Another API (MANGO API) has been deployed to enable applications to transparently request 
resources from the clusters and manage them in a unified and simplified way. Indeed, a resource 
manager (BBQE) is added to the MANGO solution taking care of resource usage. 

At the end, the MANGO API and its associated run-time is similar to the OpenCL API and run-time. 
In the next sections we will show the main API functions.  

In DeepHealth, the complete run-time of MANGO will be put at the service of the libraries deployed 
(both EDDL and ECVL).  
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 HN API definition (part I) 
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 HN API definition (part II) 

 

4.6 Netlist Partitioning and Vivado  

When designing applications for a FPGA target, at the lowest abstraction level the application is 
represented as a network of interconnected components. Those components are instances of the 
resources that are available on the FPGA (flip-flops, lookup tables, DSP, BRAM, ...), interconnected 
with nets (or wires) to form a specialized electronic circuit design. The description of this network is 
called a netlist. Typically, that netlist would be placed and routed on a description of the FPGA 
hardware, resulting in a bitstream file to be used to configure the FPGA.  
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Netlists are the result of the conversion from a higher-level representation of the application written in 
a Register-Transfer Level (RTL) language, typically VHDL or Verilog. This RTL to netlist conversion 
is called the synthesis phase.  

All those phases (synthesis, place and route, and bitstream generation) are present in the Xilinx 
development environment Vivado. However, Vivado projects typically target only one FPGA.  

The N2D2 framework developed at CEA allows the generation of specialized circuits for deep neural 
networks (see Section 3.4), according to a high-level description of the DNN. This FPGA-targeted 
DNN technology, also designed at CEA, is called DNeuro. Its output comes in the form of an RTL 
description of the neural network. Like any FPGA project, this RTL description can be imported 
in Vivado to be synthesized, placed and routed, to be implemented on the desired FPGA hardware.  

In DeepHealth, we will work on partitioning large netlists that cannot fit in a single FPGA, so that they 
are deployed on a multi-FPGA platform consisting in tightly-coupled FPGAs. Ideally, the developed 
technology will act as an abstraction of a very large FPGA, so the original design does not have to be 
modified. The partitioner will take as input the netlist to be partitioned and a description of the target 
platform (including the detail of communication links between I/O ports of the different FPGAs), and 
will output one netlist for each of the FPGAs in the platform, to be placed and routed in Vivado. The 
goal is to be able to deploy very large DNeuro networks on multi-FPGA platforms.  

4.7 OpenStack  

The OpenStack project [13] is an open source cloud computing platform that supports several types 
of cloud environments. It is a set of software tools for building and managing cloud computing 
platforms for public and private clouds. The project aims for simple implementation, massive 
scalability, and a rich set of features. 

OpenStack lets users deploy virtual machines and other instances that handle different tasks for 
managing a cloud environment on the fly. It aims horizontal scalability for a big variety of projects. 
Besides that, it is possible not only using on-premise hosts, it is very usual to use public cloud 
providers to make bigger our private cloud. 

OpenStack is made up of many different moving parts. Because of its open nature, anyone can add 
additional components to OpenStack to help it to meet their needs. But the OpenStack community 
has collaboratively identified nine key components that are a part of the "core" of OpenStack, which 
are distributed as a part of any OpenStack system and officially maintained by the OpenStack 
community:  

 Nova is the primary computing engine behind OpenStack. It is used for deploying and 
managing large numbers of virtual machines and other instances to handle computing tasks. 

 Swift is a storage system for objects and files. 

 Cinder is a block storage component.  

 Neutron provides the networking capability for OpenStack. It helps to ensure that each of the 
components of an OpenStack deployment can communicate with one another quickly and 
efficiently. 

 Horizon is the dashboard behind OpenStack. 

 Keystone provides identity services for OpenStack.  

 Glance provides image services to OpenStack. In this case, "images" refers to images (or 
virtual copies) of hard disks. Glance allows these images to be used as templates when 
deploying new virtual machine instances. 

 Ceilometer provides telemetry services, which allow the cloud to provide billing services to 
individual users of the cloud.  

 Heat is the orchestration component of OpenStack, which allows developers to store the 
requirements of a cloud application in a file that defines what resources are necessary for that 
application. 
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5 The HW Architecture Layer 

5.1 HPC Computing Resources 

5.1.1 BSC Computing Resources 

The Barcelona Supercomputing Center provides a set of high-performance computing resources to 
study how the most relevant performance limitations of biomedical applications can be effectively 
removed on modern HPC infrastructures. By using these cutting-edge high-performance systems, the 
DeepHealth project will demonstrate how its software toolkit is able to efficiently exploit 
heterogeneous HPC infrastructures. BSC hosts several HPC machines, being Marenostrum 4 the 
most relevant one. Marenostrum 4 has two separate parts: a general-purpose block and a block 
featuring emerging technologies. The emerging technologies block is formed of 2 clusters with 
different technologies and has the aim of providing computational services with the most advanced 
pre-exascale computing devices. Moreover, BSC provides another HPC cluster called Dibona, which 
is not part of Marenostrum 4. Altogether, BSC provides 4 HPC systems with different characteristics: 

1. The general-purpose block of Marenostrum 4 consists of 48 racks with 3456 nodes of two Intel 
Xeon Platinum chips, each with 24 processors running at 2.1 GHz. The whole cluster sums 
up a total of 165,888 processors and 390 Terabytes of main memory, and is capable of 
reaching a peak performance of 11.15 PetaFLOP/s. The nodes are interconnected by a low-
latency Omnipath network with a fully connected fat-tree topology. 

2. One of the blocks of emerging technologies present in Marenostrum 4 combines IBM 
POWER9 CPUs and NVIDIA Volta GPUs. This cluster is composed of 54 nodes, where each 
node is equipped with 2 POWER9 processors, 4 Volta GPUs and 6.4TB of NVMe. The nodes 
are like the ones in the Sierra supercomputer at Lawrence Livermore National Laboratories, 
which is the 3rd fastest supercomputer in the top500 list. This cluster is very suitable both for 
HPC and for machine learning workloads, as it reaches a peak performance 1.57 PetaFLOP/s 
in double precision computations. 

3. The second block of emerging technologies of Marenostrum 4 will be deployed in the next 
year, and it will be composed of Fujitsu A64FX 64-bit ARMv8 processors. The whole cluster 
will have a total computational capacity of over 0.5 PetaFLOP/s, and its nodes will have the 
same architecture as the future post-K supercomputer in Japan. The Fujitsu A64FX processor 
that will form the nodes of the cluster consists of 48 cores with a process technology of 7nm 
and 4 stacks of 8GB HBM2 memory, for a total of 32GB per node. This processor targets 
many different types of Exascale workloads, delivering a peak performance of 2.7 TeraFLOP/s 
of double precision compute power, 5.4 TeraFLOP/s in single precision, 10.8 TeraFLOP/s in 
half-precision, and 21.6 TeraOP/s in 8-bit integer precision. The architecture also includes new 
512-bit SVE extensions with specific instructions for machine learning, making it a very 
appealing cutting-edge system for the workloads used in the DeepHealth project. 

4. Dibona is a prototype HPC cluster designed by Arm, BSC and Bull (Atos Group) in the context 
of the Mont-Blanc project. Following the Mont-Blanc philosophy, Dibona is an Arm-based 
system composed by Cavium ThunderX2 processors. The cluster has 48 nodes with 2 
ThunderX2 CPUs each, and can reach a theoretical peak performance of 49 TeraFLOP/s. The 
ThunderX2 processor contains 32 ARMv8 cores running at 2GHz with 128-bit NEON SIMD 
extension, a 32MB last-level cache, and different integrated hardware accelerators for 
security, storage, networking and virtualization. In terms of memory capacity, each node 
includes 128GB of DDR4 main memory with 8 channels per ThunderX processor and a 128GB 
SSD disk for local storage. 
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5.1.2 UNITO Computing Resources 

UNITO will provide the access to the Occam cluster operated by the Competence Centre on Scientific 
Computing of the University of Turin (see Figure 8). Occam is a 1200-core heterogenous cluster 
composed of 32 “light” nodes (dual Xeon E5 12-core, 128GB), 4 “fat” nodes (quad Xeon E7 12 –core, 
768GB), and 4 “GPU” nodes (dual Xeon E5 12-core, 128GB, 2 Nvidia P100). The key peculiarity of 
the Occam cluster is its management system, which has been designed and developed at UNITO 
[12]. Specifically, the Occam management system makes it possible to dynamically create bare-metal 
virtual clusters (called virtual farms), which are booked with a calendar-based system and deployed 
with a user-defined docker image. This makes it possible to run parallel application according to 
different deployment models, including SLUM and PBS queues, direct co-allocation of a set of nodes, 
etc. More information can be found at C3S web portal [13]. Occam is equipped with a 300TB Lustre 
“scratch” storage and a 1PB “archive” storage.  

 

Figure 8. The Occam platform at UNITO. 

5.1.3 UPV Computing Resources 

UPV premises have a Xilinx ALVEO U200 PCIe card (see Figure 9). This FPGA is one of the most 
advances Xilinx boards available in the market and will be used to port and test the EDDL and ECVL 
libraries with the Xilinx workflow. The ALVEO U200 card has on-chip memory of 35MB and an off-
chip memory of 64B. The ALVEO implements PCIe 3rd generation with 16 lanes to provide a 
bandwidth of 77GB/s and can perform 18.6 Tera INT8 operations per second. 

 

Figure 9. The Xilinx Alveo Board. 

To increase the performance that can be achieved with the latest Xilinx devices, UPV also plans to 
adapt the EDDL library to work in FPGA-based cloud environments. To that end, UPV will use one of 
the available cloud services that offer FPGA computation services using ALVEO cards (e.g AWS F1 
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or nimbix) to show the scalability to the EDDL library with FPGA acceleration using the most advanced 
technology.  

As commented previously, the MANGO prototype will be used in the DeepHealth project. The 
MANGO prototype available at UPV premises has the following configuration: 

 8 supermicro servers 

 1 Gigabit switch 

 8 clusters of FPGAs, each with 
o 12 FPGAs 
o 8 DDR memories 
o 1 PCIe connection 

Each cluster is built using a prototype solution from partner PRODESIGN, enabling the connection of 
12 FPGAs and 8 DDR memories. Figure 10 shows a cluster. 

 

Figure 10. MANGO cluster photo. 

The prototype has 78 KINTEX FPGAs, 8 ZYNQ FPGAs, 8 VIRTEX FPGAs, 1 STRATIX10 FPGA, and 
one ULTRASCALE+ FPGA. In total, 96 FPGAs and 64 DDR memories (see Figure 11). 

 

Figure 11. MANGO prototype photo. 
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In addition to the previous infrastructure, UPV will also consider porting and using more advanced 
solutions based on FPGAs. One exploratory path is the use of the Cloud FPGA solution provided by 
IBM. This solution guarantees full throughput between FPGAs and provides a basic MPI-based 
communication infrastructure. This exploratory path will be analysed by UPV. 

5.1.4 PRODESIGN Computing Resources 

PRODESIGN will provide a FPGA based PCIe board. The FPGA will be a XILINX Ultrascale+ FPGA 
with embedded HBM memory (one of VU3P). The board furthermore will contain DDR4 SDRAM 
memory modules for additional DRAM extensions. 

For host communication it is planned to deliver three types of interfaces: 

 USB interface for board management and status observation 

 MMI64 communication interface for general purpose application specific communication 

 Data streaming interface for DMA based data exchange with the application providing the 
highest throughput 

With the boards comes a management tool which allows to program the FPGA bitstream and to 
perform some status monitoring. The tool communicates with the board via USB. 

For application specific communication Linux device drivers and C APIs will be provided for the MMI64 
and the data streaming interface.    

5.2 Cloud-based Computing Resources 

5.2.1 TREE Computing Resources 

In several situations, hybrid cloud solutions are a suitable solution to solve most common use cases 
in SME organizations. TREE hybrid cloud is an IaaS solution, that is a way to have an elastic hardware 
infrastructure easily adaptable to different workloads. TREE hybrid cloud solution will consist of: 

 A private cloud which is composed of a set of on-premise hosts: it will be composed of a cluster 
of 5 nodes: 

o 4 nodes of x86 hosts (all of them with 4 cores and one of them with 16GB RAM and 
the other three 12GB RAM) 

o 1 x86 host (10 cores and 64 GB RAM) with a GPU (Nvidia Pascal Titan X, 12Gb 
GDDR5) 

 Several public cloud providers which allow to make grow up the private cloud when it is 
necessary. There are a big variety of possible types of hardware which could be used from 
public cloud providers (I.e. Hosts of different sizes or GPUs). AWS, Azure and Google Cloud 
provide IaaS solutions. 

5.2.2 UNITO Computing Resources 

The HPC4AI cloud3 at UNITO operates a federated version of the OpenStack cloud. Specifically, 
HPC4AI implements a zone of the GARR cloud the Italian national consortium of research. HPC4AI 
is currently composed of 10 nodes (Xeon 40-core, 512GB RAM, 4 NVidia T4 GPUs) but is planned 
to grow up to 40 nodes of the same kind mid 2020. HPC4AI offers the standard IaaS services of the 
OpenStack cloud and exploit a novel Deployment-as-a-Service service based on the Juju software 
(from Canonical).  

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

3 https://hpc4ai.it  

https://hpc4ai.it/
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6 Conclusions  

The computing infrastructure upon which the DeepHealth EDDL and the ECVL libraries will execute 
have been described in this document. Concretely, the document incorporates: (1) the programming 
models (and access methods) for an efficient exploitation of the performance capabilities of the 
DeepHealth computing infrastructure, and (2) the HPC and big-data cloud based computing 
resources available for the project. This set of software and hardware components described in this 
deliverable will be the baseline upon which WP5 activities will be developed. 

Overall, tasks 1.3 and 1.8 has been carried out successfully and the related project objectives have 
been reached and documented in this deliverable. 
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